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Abstract

The talk describes a “lifting” of the system of unary representations of numbers into a
system of tree-like representations. Alternatively, this can be seen as an arithmetic descrip-
tion of certain combinatorial properties of trees. In particular, addition, multiplication, and
exponentiation of trees can be defined in a natural way.

This talk is based on [1]. We start with the family of complete binary trees [3], where each node
has either 0 or 2 successors. The trees considered are rooted and embedded in the plane, so that
left and right are distinguished. Nodes without successors are the external nodes, sometimes called
leaves. The weight or size of a tree t is taken to be the number of its external nodes and is denoted
by [t]. It has been well-known for over a century (bracketing problems, see [2]) that the number of
trees of size n is given by the Catalan number,
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One may well view a tree of size n as a tree-like representation of integer n, and try to generalize
the usual operations of addition, multiplication, and so on, of the integers. In other words, we also

regard trees as extending the unary representation of integers with some supplementary structure
superimposed, hence the name of “structured numbers” in the title.

1. Operations

First, addition is the basic operation defined as associating to two trees, v and v, the tree
u+tv:=(u-v)

obtained by taking a root node and appending w and v to it, as left and right subtrees respectively.
Given that weight is defined by number of external nodes, one has [{| = |u| + |v|, so we do capture
in a way the usual addition of integers. On the other hand, it is clear that addition of structured
numbers is not in general commutative.

Multiplication should be defined as a suitable iteration of addition, exponentiation as an iter-
ation of multiplication, etc. Such a process is taking its inspiration from what has been done for
corresponding integer operations; in that case, a denumerable collection of operations result that
lead to the classical Ackermann function of recursive function theory. The talk and the paper [1]
both propose to examine what survives of properties of integers in this context.
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A whole hierarchy of binary operations on trees is introduced recursively as follows:
a'b=a+b, a - b= (a-*by)-" (a-Fb),

where by, b, are the left and right root subtrees of b. We thus have by definition @ -! b = a + b, and
we define multiplication and exponentiation by

axb=a-*b, a® =a?b.
Note that the multiplication in @ X b can be viewed as the process of grafting copies of a at each
leaf of b, that is to say, as the substitution b[a].
THEOREM 1 (WEIGHT THEOREM). With a and b arbitrary trees, one has
ja+8] = lal + 6], Jaxb|=lal-|o], [d'|=lal".
For higher-order operations, the weight of the result is no longer independent of the shape of the
operands.
THEOREM 2 (DISTRIBUTIVITY). With a,b,c arbitrary trees, one has
afb+ec)y=(a*b) 1 are), ar(bxec)=(a-"b)Fec
For instance, we have the natural generalizations
ax(b+ec)=axb+axec, ax(bxc)=(axb)xec,
a®*o) = @ x o, a¥%¢ = (ab)c‘

These two theorems are representative of the results of [1]. Other properties include right sim-
plifiability of +, x (the property stops at level 3 of the hierarchy!).

2. Prime trees

It is clear from the interpretation of multiplication as substitution that a tree is composite or
non-prime (is non-trivially decomposable under multiplication) if and only if one of its “fringes”
consists of identical trees. Each tree then factors uniquely into primes [1]. From there, it is natural
to ask whether there is some sort of a prime density theorem for structured numbers. The answer
was obtained jointly by the speaker and the author of this summary. We briefly explain it here.

The number 7T, of all trees of size n is known and given by (1). Let I,, be the number of those that
are primes; clearly, we must adopt I; = 0 (1 is not a prime!). Let T'(2), I(z) be the corresponding
generating functions:

T(Z):ZTnZn:Z+Z2+223+5Z4+14Z5+4226+---’

n>1
I(z) = ZInZn =22 4228 42" 4 142° + 3825 + -+
n>1
Combinatorial classics [2] teach us that
1-+v1-4z
5 .

Now decomposing trees according to their prime “trailers” yields a relation defining /(z) implicitly:

T(z) =

(2) T(Z) =z+ ZTkI(Zk)v Tn = 6n,1 + E Tn/dId-
k=2 dln,d>2
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We recognize here a product of (formal) Dirichlet series. Setting

=] 1} =] ]ﬁ

T(s) = s us) = Z: —

we have the relation matching (2):
T(s)=14+7(s)(s) or us)=1-
Thus expanding 1/7(s) as (1 4+ v(s))~! yields
Li=T,— > TaTo,+ >, ToTyTa—--.

dydy=n dydodz=n
a;>2 a;>2

In particular 7, — I, is equal to 0 if n is prime (as it should), is equal to (7,)* if n = p* is the
square of a prime, and is otherwise approximated by 27,7, /, if p is the smallest prime divisor of
n. Here are a few initial values.

n 1 2 3 4 5 6 7 8 9 10 11 12

T, 1 1 2 5 14 42 132 429 1430 4862 16796 58782
L, 01 2 4 14 38 132 420 1426 4834 16796 58688

Note that the asymptotic form of 7,, results from Stirling’s formula:
4n—1

\/7rn3.

T, ~

Clearly, almost trees are irreducible: the asymptotic density of primes is thus 1 and further char-
acterized by the remarks above.
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