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1. Introduction

The interest of this talk is the integration of hyperelliptic functions. The technique used for
such integration follows the usual pattern for the integration of algebraic function developed by
R. H. Risch, B. M. Trager, J. H. Davenport and a representation of divisors over hyperelliptic
curves due to D. G. Cantor. For example, we want to compute the integral
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If the exact value of this integral is needed, then one normally computes a primitive. In this case

it is equal to
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If we set

(2) y =2+ -1,

then one can consider the integral
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over the algebraic function field of the affine curve

C={(a,b)e A*(C) : 6> —a’ —a +1=0}.

2. Integration over function field of curves

The general setup is the following. Let K be a field of characteristic 0, K an algebraic closure
of K and F € K[z,y] an absolutely irreducible polynomial (that is F is irreducible over K). We
consider the function field

K(C) = K(x)lyl/(F)
where C is the curve defined by F(z,y) = 0.

DEFINITION 1. A function H is said to be an elementary primitive of h € K(C) if H' = h and
if H can be written from functions of K(C) using combinations of logarithms, exponentials and
algebraic expressions.
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In the previous example
325 —x 42

h =
(22 -2 —x+ 1)y’

the curve has for equation

y -2 —a2+1=0

1og<x+y>.
r—Yy

We want to answer the following questions:

and h has for elementary primitive

(1) Does a function h € K(C) have an elementary primitive # = [ hdz over K ?
(2) If so, what is this primitive?

Risch have shown that if H is an elementary primitive over K then

(3) H = v, + Zci log(v;)

i=1

where vy € K(C), ¢; € K and v; € K(C). The algebraic part v, is computed using Hermite’s
algorithm and the logarithmic part is done using Risch’s algorithm.
Following is a short history of integration of algebraic functions.

1833: Liouville’s principle; gives the form of the elementary primitive;

1872: Hermite’s algorithm; allows the computation of the algebraic part;

1970: Risch’s algorithm; allows the computation of the logarithmic part. Needs arithmetic over
divisors of function fields and principality test;

1981-1984: Davenport and Trager algorithms; first implementable algorithms.

3. Special case: hyperelliptic curves

In his thesis, B. Trager gives an algorithm which solves the previous questions in the general
cases. The work of L. Bertrand studies the case where C has genus g > 2 (hyperelliptic) and K(C)
is a quadratic extension of K (z) with z € K(C) transcendental over K. Let L be the function field
of genus g of the curve C defined by the equation

(4) y* = f(2)

where f(z) is square free of degree m. In this case, the computation of the logarithmic part of the
primitive is reduced to the computation of the primitive of the following type

P,
/w where w = 0l2)y d

with P,Q € KJ[z] such that ged(Q’,Q) = ged(P,Q) = ged(f,Q) = 1. To the differential w
is associated some zero degree divisors D, D,, ..., D, over the normalized of the affine curve C
defined by (4). A necessary condition for the primitive to be elementary is that all these divisors
are torsion divisors, that is there exist m;, (¢ = 1,...,k), such that m;D; are principal. Then the
functions v; € K(C) such that (v;) = n;D; are candidates to verify (3).
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4. Representation of divisors

For quadratic extensions, L. Bertrand has developed an algorithm which is much more efficient
than Trager’s one. This is because the test of principality is greatly improved by the use of a
simpler representation of divisors over such quadratic extensions. Following is an overview of such
representations. Two cases are considered:

— m = 2¢g+ 1 and C has a unique point at infinity;
— m = 2¢g 4+ 2 and C has exactly two points at infinity.

Case m = 2g+ 1. Any divisor D of degree 0 may be written

k k
(5) D=3 nP, =) nPs.
i=1 i=1

It is represented by two polynomials
[a(z), b()]
where
— a(z) = I, (2 — @)™
— for all ¢, vp(y — b(2)) > ny;
— degb < dega.

Case m = 2g+ 2. Any divisor D of degree 0 may be written

k
D= anR + 'noo+Poo+ + noo—Poo—

i=1
with Ele N + Neot + Noo—- = 0 and the representation of D is given by

[a(2), b(z), 8]

where @ and b are defined in the same manner as in the case m = 2¢g + 1 and where § = ng+ — Neo- .

5. Arithmetic in the Jacobian

To test if a divisor D is a torsion divisor, one computes the order of D in the Jacobian over several
well chosen finite prime fields (note that over finite fields, any zero degree divisor is a torsion divisor
since the Jacobian of the curve is finite). Using the outcome of these order computation, one can
decide if the divisor D is a torsion divisor or not.

The computation of the order of a divisor is done by performing a principality test of [D for
[ =1,2,... until we find [ such that [D is principal. To do so in an efficient way, fast arithmetic
computation over the Jacobian is needed. Following is an overview of how it is done using the
representation of divisors by two polynomials (for more details see [1]). Let D be a divisor repre-
sented by [a,b]. Then —D = [a,—b] — (a). Let D; and D, be two divisors represented by [a;, ;]
and [a,, b] respectively. Then

ajas hyiaiby + hoashy + ha(bibs + f)
a2’ d

(6) Dy + Dy = mod a| + (d)

where

d = ged(ay, as, by + by) = hyay + hoas + ha(by + by).
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A notion of reduced divisor is considered and the principality test relies on a theorem stating that
a reduced divisor D is principal if and only if D = [1,0]. Using the arithmetic over the Jacobian,
one can compute for any divisor D an equivalent reduced divisor Dy, that is such that D = Dy+(h)
for some function h € K(C). In the case where m = 2¢g + 2, a similar notion of reduced divisor is
used, and a reduced divisor D is principal if and only if D = [1,0,0].
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