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1. Introduction

Let k = F, be the finite field with ¢ elements (¢ a prime power p”, r any nonnegative integer).
For the basic properties of finite fields, as well as an introduction to normal bases, etc., we urge
the unfamiliar reader to read [3, 4, 5].

Let A be a k-linear operator of k" and call M the associated matrix, that is an element of M, (k).
The aim of this talk is to introduce the so-called Shift-Hessenberg form of M (SHS form for short)
and describe its properties. In particular, it will be shown that there exists a fast algorithm for
computing H.

Having the SHS form of M enables us to solve several problems. First, we can find cyclic vectors
for A and therefore find a normal basis for F,» over F,. We can also find the minimal polynomial of
M. Moreover, if we have the factorisation of the characteristic polynomial of M, we can compute
the characteristic subspaces of A and get the Frobenius form (a.k.a. rational canonical normal
form) of M. Ounly the first of these — the computation of cyclic vectors — will be described in this
summary. Details can be found in [1].

In the sequel, we will restrict to the case where the characteristic polynomial of A is squarefree,
hence equal to the minimal polynomial of A.

2. Cyclic vectors and companion matrices

Let P(X) be a monic polynomial of degree n with coefficients in k:

n—1
P(X)=X"+) pX'.

i=0

It is easy to see that P(X) is the characteristic polynomial of the so-called companion matriz

0 0 -+ 0 —po
r 0 -~ 0 -p
Cp=|0 1 - 0 —p
0 1y

Let A be a linear operator over k and let P4(X ) denote its minimal polynomial.

DErINITION 1. If v is a vector in k™, the minimal polynomial of A relatively to v is the lowest
degree nonzero polynomial P,(X) such that P,(A)v = 0.
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DEFINITION 2. A vector v is called cyclic if and only if P,(X) = Pa(X).
One has the following;:
THEOREM 1. Fvery linear operator A has a cyclic vector.

In the case where P, is equal to the characteristic polynomial, and if v is a cyclic vector, the
matrix of A in the basis (v, Av,..., A" 'v) is a companion matrix.

Let M be the matrix of A and call C' the companion matrix of its characteristic polynomial. The
problem we want to solve is how to compute a cyclic vector as fast as possible. We will perform
this operation in several steps: the first one is the computation of the Shift-Hessenberg form of M,
noted H, and the second is finding C' from H.

3. The Shift-Hessenberg form

ProposiTION 1. Let M be an n x n matriz of M, (k). There exists a matriz H similar to M of
the form:

oo O = O
o= O oo
o X X X
X X X X X
X X X X X

—_
x
X

X

The matriz H is called the Shift-Hessenberg form of M (SHS for short). Computation of H requires
O(n?®) elementary operations in k.

Proovr. Do as in Gauss reduction, but starting from the sub-diagonal. If there is no non-zero
element in the first column, below the sub-diagonal, then do nothing. Otherwise, assuming that it
is M, 5 (permuting lines if needed), eliminate all non-zero entries of this column. At the end of the
process, we end up with a matrix of the above form.

The cost of this algorithm is very close to that of Gaussian reduction, that is O(n?). O

It is clear, that when we can find a pivoting element for each column, we end up with a companion
matrix. More generally, any SHS matrix can be written as

Hp, B, Hp, B, -+ Hp s,
0 Hp,p, -+ Hg,pB,

(1) H= . . .
0 0 Hg, p,

where m is an integer called the parameter of H and where each Hp, p; is a companion matrix. It
can be shown that the minimal polynomials of the Hp, p, are pairwise coprime.

94



4. From the SHS form to the companion form
The key of the algorithm is the following Lemma [1]

LemMMA 1. Let A be any block-triangular matriz with two blocks:

_ (As, B, A, B,
A= < 0 ABQ,BQ) '

Fori=1,2, let f;(X) be the minimal polynomial of Ag, p,. Assume f; and f, are relatively prime.
Let vg, be a cyclic vector for Ap, p,. Lel hy be such that hy(X)fo(X) = 1 mod f1(X). Then a

<UB )
v =
LBZ

up, = hy(Ap, ,) (fo(A)up,) s, — vs,)-

The computation of v can be done in O(n?) field operations.

where

Now suppose we are given H in the form of (1). If m = 1, H is already a companion matrix. If
m = 2, the preceding Lemma applies. When m > 2, there exist two strategies. The first one is to
compute a cyclic vector for the last two blocks, replacing these blocks by a companion matrix, and
so on, until the whole matrix is companion. The second one is to split H in the form of

Hp, B, Hp, s,
2) < 0 HBQ,BZ)

such that the sizes of Hp, p, and Hpg, p, are kept under control. These can be chosen such that
either Hp, p, is a single companion block of size > 2n/3 or both matrices have size < 2n/3. This
leads to two deterministic algorithms. The first one is iterative and has cost O(n® + n*m?); the
second one is recursive and has cost O(n?). We note that on average, the parameter m is O(logn).

All these algorithms have been implemented in AX10M and give very encouraging running times.

5. Normal bases
DEFINITION 3. Let K be a finite extension of degree n of k. An element o € K is normal if and
only if

n—1

2
C — 7 o1 q
K = Vectp(a,a?,a?,...,a" ).
. 2 n—1 . .
If a is normal, then (o, a?,a?,...,a? ) is called a normal basis.

Using a normal basis is particularly useful when computing powers of elements, since this is
readily done via a cyclic shift:

(6107 Apyenny an_l)q = (an_17 ag,y . . .7an_2).

Moreover, it is easy to construct a multiplication table for k£ by precomputing the quantities o x a?'
for all . We can see this as follows. Write

n—1 ) n—1 n—1
c= (Z aiaql) (Z biaql) = (Z ciaql) .
i=0 i=0 =0

T

n—1

Then ¢y = Fy(a,b) is a bilinear symmetric form. Using ¢?""" = a¢" we deduce that

(10 + ara? 4+ - )(bha+ba! + - )=cra+ -
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or ¢; = Fy(a”,b”) where o denotes the shift operation. We see that computing all ¢;’s needs only
one matrix operation, followed by conjugation.
It is easy to see that:

ProrosiTiON 2. Let 7 : x — ¢ denote the Frobenius automorphism. Then a is normal if and
only if a is a cyclic vector for .

Using the results of the preceding sections, and noting that the minimal polynomial of 7 is
X" — 1, that is squarefree for (n,p) = 1, we get

THEOREM 2. We can find a normal element in deterministic time O(n® + n?log q), where the
last term accounts for the computation of a matrix representing 7.

This result improves upon earlier results by von zur Gathen and Giesbrecht who gave a proba-
bilistic algorithm in O(n?logg) (using fast polynomial multiplication) or O(n?®log¢) without fast
multiplication, and a deterministic algorithm running in time O(n* + n?log q).

It is possible to treat along the same lines the case where n = p*.
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