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The reduction of Pascal’s triangle modulo a prime number p, or a power of a prime number,
has been intensively studied. It is known that the reduction produces a phenomenon called auto-
similarity; natural homotheties with contraction ratio 1/p* appear, and a limit set in the sense of the
Hausdorff metric exists; moreover the limit set has fractal dimension log (*1')/log p. The reduction
modulo a composite number does not produce this phenomenon of auto-similarity; however it is still
possible to make a limit set come out [7]. This talk shows a way to describe the complexity of such a
double sequence. The basic tool is the concept of a double automatic sequence. First we introduce
automatic sequences and complexity of sequences over a finite set; as an illustration it is shown
that there are about (m + n)? distinct rectangular blocks with m rows and n columns in Pascal’s
triangle reduced modulo a prime number [1]. Next we give a statement about the automaticity of
some linear cellular automaton, and specifically of Pascal’s triangle reduced modulo an integer [2].
Finally an application to musical composition is mentioned [3, 5].

1. Automatic sequences

Formal language theory provides a way to define infinite words as fixed points of morphisms. As
an example, take the alphabet {0,1} and the recurrence

Wo = 07 Wpp1 = WpWhy,

where the bar means exchange 0 and 1; the first few terms of the sequence are the following words,

Wy = 0
wy, = 01,
Wy = 0110,

w; = 01101001,
w, = 0110100110010110,
ws = 01101001100101101001011001101001.

Ultimately an infinite word appears. This word is the Thue-Morse word, which is a fixed point of
the substitution [6]

o(0)=01,  o(1)=10.

Another example is defined as follows. Two letters, a left brace { and a right brace } are the
elements of the alphabet. The sequence of words A, is defined by the rules

Ao=1{},  Any={4,...A,}.
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The limit sequence is a fixed point of

MO = A =1

and provides the sequence of natural integers, as defined by Bourbaki.

Ficure 1. Pascal’s triangle reduced modulo 2 (top) or modulo 6 (bottom); the
size of a dot is proportional to the value of the residue it represents. In the first case
the picture is auto-similar, but not in the second one. Nevertheless, in both cases,
a limit set exists in the Hausdorfl metric.

All these sequences are 2-automatic. (The 2 refers to the fact that the alphabet has two letters.)
The definition may be adapted to double sequences. For instance the morphism

s0=(y 9. s=(; 1)
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applied to the starting point 1 gives Pascal’s triangle reduced modulo 2,

100 00000
1100 0000
101 00000
11110000
100 01000
11001100
101 01010
11111111

2. Complexity

The complexity of a sequence over a finite alphabet is defined as another sequence p(n), where
p(n) is the number of distinct factors with length n in the given sequence. Obviously the complexity
satisfies

1< p(n) <47,

if the alphabet is of size ¢. The complexity reflects how intricate the sequence is. For instance, if
for any n the inequality p(n) < n is satisfied, the sequence is ultimately periodic. In the case of the
Thue-Morse sequence, the sequence of differences p(n + 1) — p(n) is 2-automatic. Cobham showed
that every automatic sequence has complexity O(n) [4].

For double sequences, the shape of block to use in the definition of complexity is rather arbitrary.
A natural choice is to consider rectangular blocks. Then, the complexity is a double sequence
P(m,n) where P(m,n) is the number of distinct rectangular blocks with m rows and n columns
occurring in the given double sequence.

For Pascal’s triangle reduced modulo 2, it is readily noticed that the complexity satisfies

Py(m,n) = Py(1,m+n—1).
Moreover the relation
(14 2)* = (14 2?)*
shows that row ¢ determines rows 2t and 2t + 1; as a consequence the formula

Py(1,n)=n*>—n+2

is satisfied. More generally, Pascal’s triangle reduced modulo a prime p has complexity order n?.
The proof relies on the fact that differences of order 2 of P,(1,n) form a p-automatic sequence. If
the modulus is not a prime but is square-free, for example if the modulus equals 6, the Chinese
remainder theorem shows that

Ps(1,n) < Py(1,n)P5(1,n).

Actually, the quantities are equal, since the residues modulo 2 and modulo 3 may be considered as
independent. More generally, the complexity P,(1,n) of Pascal’s triangle reduced modulo a square
free number ¢ is shown to be of order n?*(9), where w(q) is the number of prime factors of ¢. The case
)p = (1 —|— $‘n)pa_1
mod p®. This result gives a mathematical meaning to the feeling that Pascal’s triangle reduced
modulo m is more and more complex as the number of prime factors of m increases.

a—1

of prime powers may be tackled by a formula due to Kummer, namely ((1 +z)P
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3. Automaticity of linear cellular automata

Pascal’s triangle is an example of a linear cellular automaton. There is an initial state, here
g(z)=1,and arule r(z) = 1 + 2. At time ¢, the state of the automaton is g(z)r(z)’. To recover a
more classical definition from this one, it suffices to consider that coefficients of the state at time ¢
are the contents of cells arranged along the infinite line of integers Z. Moreover the set of states of
a cell is finite if the ring of coeflicients is finite; here the ring is the ring of integers modulo m. In
other words, the double sequence of binomial coefficients reduced modulo m shows the evolution
of a classical linear cellular automaton.

It is shown that, when reduced modulo a prime power p¢, a linear cellular automaton provides a
p-automatic double sequence. The proof needs an additional concept: a polynomial r(z) is said to
have the m-Fermat property if it satisfies

r(z™) =r(z)".

The Kummer formula above gives an example with m = p a prime number. When the rule r(z)
has the m-Fermat property, then the associated double sequence is m-automatic.

As a consequence Pascal’s triangle reduced modulo m is m-automatic if m is a prime power.
Moreover the converse is true, and its proof relies on Cobham’s theorem which asserts that a se-
quence both p-automatic and g-automatic, p and ¢ being prime and distinct, is ultimately periodic.
Here the sequence used is the sequence of central binomials (2:) This result gives a precise formu-
lation of the fact that Pascal’s triangle reduced modulo a composite number is more complex than
when reduced modulo a prime power.

4. Musical composition

Some composers have used finite automata to produce musical motifs. For instance Tom Johnson
has used the morphism defined on a two-letter alphabet {+,—} by

W) =4 p) =+

A + codes a melodic ascent, and a — codes a melodic descent. In the same vein, he has used
Pascal’s triangle reduced modulo 7. The interest of such a composition is that automatic sequences
are at the frontier between periodicity and chaos. But as Tom Johnson himself says, this can only
be a tool and certainly not a way of composing music in a purely automatic fashion.
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