Random Generation of Unlabelled Combinatorial Structures

Paul Zimmermann
INRIA Lorraine

October 25, 1993

[summary by Eithne Murray]

Abstract

A systematic method for generating unlabelled combinatorial structures uniformly at
random is presented. It applies to structures that are decomposable, i.e., formally specifiable
by grammars involving unions, products, sequences, multisets and cycles. All such structures
of size n can be generated uniformly by either sequential algorithms of worst-case arithmetic
complexity @(n?) or by “boustrophedonic” algorithms of worst-case complexity O(nlogn).
The random generation procedures are derived automatically from a high level description
of the combinatorial structures. An implementation of this system in the computer algebra
system Maple is briefly described.

1. Introduction

Presented here is a systematic method for generating unlabelled combinatorial structures at
random. Given a grammar-like specification of a class C of such structures, there is a method to
automatically produce procedures for the random generation of objects in C of a fixed size n. The
analysis of the labelled case has already been done [1]. The unlabelled case is more complicated
because of the symmetries in unlabelled objects.

The specification language consists of union, cartesian product, sequence, multiset and cycle,
as well as two basic initial objects: the structure € of size 0, and Z, an atomic node of size 1.
Our method can be used on any decomposable class of objects that can be specified by using these
constructions iteratively or recursively.

Typical examples of decomposable classes are integer partitions, necklaces, unlabelled trees and
forests, random mapping patterns, term trees under associative and commutative laws, and deriva-
tion trees of all context-free languages. As an example of a specification consider the class H of
unlabelled hierarchies, that are defined as non-plane trees in which the degrees of the internal nodes
are always at least 2. We define H with the specification language by

H =7 + multiset(H, card > 2).

(Unlabelled hierarchies are relevant to statistical classification theory.)

2. Counting

If we know the number of objects ¢, in a decomposable class C of size n, we can generate
an element of size n uniformly at random. Looking at the ordinary generating functions that
correspond to each construction in the specification language, we get the following theorem.

11

THEOREM 1 (FOLK THEOREM OF COMBINATORIAL ANALYSIS). Given a specification ¥ for a
class C', a set of equations for the corresponding generating funclions is obtained automatically by
the following translation rules:

C=A+B = C(z) = A(2) + B(2)
C=AxB = C(z2) = A(z)- B(»)

C = sequence(4d) — C((z)= 1 {4(3)

C =multiset(4) = C(z)=exp (i %A(Zk))

C = cycle(A) = C(z)= i kpkk) log 1= il(z’“)

where p(k) denotes the Euler totient function.

Thus, to count the number of objects of size n of a structure given by a grammar specification,
we can use its corresponding enumerating generating function that is built up from the grammar
according to the rules of the theorem.

3. Standard Specifications

We transform each grammar into a kind of Chomsky Normal form. Thus, each union and product
will be binary, we use unions and products in place of sequences, and we rewrite multiset and cycle
using the pointing operator, ©, where © A can be interpreted as pointing at any of the atoms of a
structure A. Analytically, we have

C =04 = C(z) = 0A(z) where Of(z)=2z- % (2).

Using the generating function from the above theorem, we see that if A = multiset(B), then
OA(z) = A(2) X (OB(z) + OB(z*) + ©B(2*) + - -+)

We will rewrite this expression using a new operator in the following way: ® A marks an atom of
an object of A. When A = multiset(B), an object of A is a collection, with repetitions, of objects
of B. Thus we can think of marking an atom of an A object as really marking the corresponding
B object, so we would like to say that @A = A X OB (as in the labelled case). However, in the
unlabelled case this is not quite accurate. We cannot distinguish between {b,b, ¢} with the first b
marked, and the same set with the second b marked at the same atom. So instead, we will think of
marking not one b, but all of them “stacked” together. Thus, ©A = stack(O(B)) x multiset(B).

We denote this “stacking” function, or the diagonal, by A. Then is is easily demonstrated that
the generating function corresponding to A is given by the following.

THEOREM 2. AF(z) = F(2) + F(z*) + F(z*) + - --

Then we can rewrite our expression for multiset as A = multiset(B) = 0A = AOB x A, which
is exactly what we started with.
Given a numeric sequence {u(k)};2,, the generalised diagonal is defined by

Afuy = Z uk) A,
k=1
12

Combinatorially, this means taking a weighted combination of diagonals. Analytically, this also de-
fines a linear operator over generating functions involving a weighted combination of A(z), A(2?),...
C=Anand = C(2) = AnuanAl(z) = 3 u(k)A(Z).

k=1

Thus, we can rewrite our expression for multiset as
A =multiset(B) = OA(z) = A(2) - A;1;0B(z).

We also find that 0B()
z

A =cycle(B) = OA(2) = A —_—
ycle(B) (2) = Aqpan B()
For both multiset and cycle, we can derive similar relations when we have an imposed restriction
on the cardinality, thus all cardinality restrictions are also expressible in terms of the union, product,

generalised diagonal and pointing operations.

4. Generation

Once we know how to count the number of objects C, in the decomposable class C, we can
generate objects of size n. The generation of most structures is the same here as in the labelled
case, and so we will only briefly discuss the two main algorithms. Again, details can be found in [1].

Say C = AXx B. Then C,, = Y, AxB,_; and thus Pr(K = k) = agb,_1/c,. To generate an
object in C of size n using the sequential algorithm, we randomly pick a number between 0 and ¢,,
and then we sequentially, “from the left”, add up the probabilities for increasing values of k until
we find the interval in which our random number lies. For that k, we then recursively generate an
element of size k£ in A and an object of size n — k in B.

Random generation of a product using the sequential algorithm corresponds to calculating the
path length of the corresponding parse tree for the product, and thus is known to have worst case
complexity O(n?).

If instead, we use the Boustrophedonic algorithm, we can reduce the worst case complexity from
O(n?) to O(nlogn). For this algorithm, instead of starting “on the left” and sequentially adding up
probabilities to determine which value of k to use, we first start at the left, then the right, and keep
alternating back and forth until we have either found the value of k or the value of n — k, whichever
is smaller. (Boustrophedonic means “turning like oxen in ploughing” (Webster).) If either value is
small, we will find it quickly, and in the worst case (when n = k), the problem will be split into
two subproblems of equal size, which is also an advantage. Analysis of this problem gives us the
following theorem.

THEOREM 3 (BOUSTROPHEDONIC GENERATION, UNLABELLED CASE). Any class of unlabelled
structures that admits a (possibly recursive) specification in terms of the given constructions is
susceptible to a random generation algorithm of arithmetic complezity O(nlogn).

A cost analysis of both algorithms on average case problems suggests that while the Boustrophe-
donic algorithm has better worst case behaviour, in the sequential algorithm we can take advantage
of optimisation strategies suggested by the cost calculus, and it appears that most classical classes
of structures can be generated in time asymptotic to nlogn or sometimes even O(n) on average.

For unlabelled objects, we have the new problem of generating elements that use the A operator.
Say G = AF. Then G,, = > 4, Fu/k, and so the probability that G produces a k-stack of size n is
F,/x/G,. Now that we know the distribution of probabilities, we can use a sequential algorithm to
choose the appropriate value for the stack size k, and hence generate the element. It is important to

13

note that generating AF has the same complexity as generating F, since we only need to consider
at most the number of divisors of n.

5. Implementation

This system has been implemented in the Maple language by P. Zimmermann and E. Murray
(for a detailed description of a preliminary version, see [2]). The program takes a grammar of an
unlabelled (or labelled) structure and rewrites it into the standard, Chomsky-Normal form using
only union, product, pointing and stacking. Then, for each non-terminal in the new grammar,
it creates a function based on a pre-existing template to count objects of size n defined by the
non-terminal, and another function to draw an object of size n defined by the non-terminal. These
functions are stored in tables, and called when the user asks to count or generate an object of the
original specification.

For example, with the grammar C = Union(A,B), the program will create a function gC to
generate C objects:

gC := procedure(n : integer)

U :=Uniform(|0, 1]);
if U < a,/c, then gA(n) else gB(n) fi

end.

Some examples that have been implemented using this program include 2-3 trees, binary trees
of fixed or bounded height, arithmetic expressions of one variable and circuits with resistors in
parallel and series. For instance, the grammar specification for binary trees of height < 3 is

{Bo = Z, B, = Union(Z, Prod(By, By)),
By = Union(Z, Prod(B,, By)), B; = Union(Z, Prod(B,, Bs))}.

6. Conclusion

This systematic approach to random generation not only handles widely different problems that
have been studied in detail elsewhere on an individual basis, but it also in some cases improves the
worst case bounds previously known. For example, the boustrophedonic algorithm gives O(nlogn)
worst case time to all unambiguous context-free languages, whereas the best previous bound (due
to Hickey and Cohen) is O(n?*¢). Further areas of research involve extending the system to include
powersets, and to consider the unranking problem: given a structure A, two integers n and 1 <
1 < A, output the ¢th object of size n in A. If we could do this, we would be able to generate all
objects of a given size very efficiently.

Bibliography

[1] Flajolet (Philippe), Zimmerman (Paul), and Van Cutsem (Bernard). — A calculus for the random gener-
ation of labelled combinatorial structures. Theoretical Computer Science, vol. 132, n° 1-2, 1994, pp. 1-35.

[2] Zimmermann (Paul). — Gala: A package for the random generation of combinatorial structures. The
Maple Technical Newsletter, vol. 1, n° 1, Spring 1994.

14

