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Abstract

A new theorem is given concerning the convergence of the Newton method. In this result
appears the constant hg = 0.162434 ... which plays a fundamental part in the localization
of “good” initial points.

1. Introduction

Given an algebraic equation over C, P(z) = 0, it is well-known that the Newton iteration

 Plz)
P/(z)

converges to a solution z* provided the initial value z, is sufliciently close to z*. This iteration is
generally used as a refining step in a root finding algorithm to increase the accuracy of the solutions,
for example in the exclusion algorithm described in [1]. The problem of giving sufficient conditions
on z for (1) to converge is classical. For example, the Newton-Kantorovitch theorem [2, p. 263]
states that under the condition
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with some h > 0, the Newton iteration is well defined and converges to the unique solution in
|z — 29| < 2|P(zy)/P'(20)| of the equation P(z) = 0. This result presents two disadvantages in
practice: condition (2) is not expressed at only one point 2y, and the discs of unicity of a solution
are generally small. The first result concerning the convergence of Newton method with a punctual
criterion is given by Smale in [3]. A new result of this type is given in the following.

THEOREM 1. Let P be a univariate complex polynomial of degree d. Lel hy ~ 0.162434 ... be
the first positive root of the polynomial 4h® — 12h* + 8h — 1. Let 2z, € C and h € [0, ho) such that
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Then (convergence) the Newton iteration (1) converges to a simple solution z* of the algebraic
equation P(z) = 0; (complexity) the convergence is super-quadratic, that is
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where a = 2h2 —4ho+ 1 ~ 0.404488 ... and hy/a* ~ 0.990156 .. .; (set of unicity) for z € C, define
the polynomials in t

L(z ) =1- df E(C]

o U end L(z0) =1Lz, 1) - [P(2)].

k=1

Denote by {(2*) the positive root of L(z*,t). The polynomial L(z,1) is concave over R and admils
either no real roots or two positive roots {~(z) < {*(z). Then each set of form |z — z,| < {*(z,)
for the indices n such that £(z*) > €~ (z,) (this happens for n large) contains only one solution of
P(z) = 0 which is z*.

This result generalizes well for algebraic systems [4].

2. Proof of convergence

It is interesting to give a general idea of the proof to understand the origin of the universal
constant hq. Suppose z, satisfies conditions (3). A first inequality on P(z;) is easily derived:

() Pl =[P (- )| < S < 2 PG

Next, we would like z; to satisfy conditions (3). Expanding, it is easy to obtain the inequalities

P®) (z)P(2)F1 R \*7! Sp.a(h)
< pFt < ) : 2<k<d
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where
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Spa(h)=>_ ( . )hz and Ty(h)=1- (i+1)h'.
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Thus, we need Yy 4(h) = h*=1S; 4(h) — (1 — h)*=1T4(h)* to be negative. It is technical but feasible
to show that the polynomials Y}, 4 have only one positive root yj, 4, and that they satisfy Y, 4(h) < 0
for 0 < h < y54. The sequence y; 4 is strictly decreasing and tends to the smallest root hy ~
0.162434 ... of the polynomial 4A® — 12h* + 8h — 1 (therefore it is possible to replace kg by ya 4
in the theorem). Now, by induction, inequality (4) leads to |P(z,)| < (ﬁ)n|P(zo)|, showing that
P(z,) — 0 and by continuity, (z,) converges to a solution z* of P(z) = 0.

3. Conclusion

This result gives a good refining algorithm that fits well with the exclusion method [1]. The result
of stability in the theorem also provides good bounds for a classical homotopy method: starting
from the roots of a polynomial (=), we find the roots of P(z) by finding those of the polynomials
Hy(z) =1P(z) 4+ (1 — 1)Q(z) for successive values of { between 0 and 1.
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