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Let k be a differential field (e.g. & = Q(z) or k = C(z)) with derivation =. We review the

d
methods of differential Galois theory used for solving the equation L(y) = anyf”) + a,_1y* Y 4

-4 apy = 0 (with @; € k). For effectivity and simplicity, we take k = Q(z) in the sequel.

1. Classes of solutions

1.1. A solution is rational if it belongs to k. For example, the equation asy” + zy' —y = 0
has the solution y = z which is in k. Algorithms for computing such solutions have been known
for long. The first one is due to Liouville (1833). Some faster or more general versions have been
given by Abramov [1], Bronstein [2], and Singer [4] (for the case when k contains a wider class of
functions).

If there is no rational solution, then one must perform a field extension to find a solution. Let
K be a differential field which is an extension of k, and A be the derivation on K (resp. § on k).
We say K is a differential field extension of k£ if A and é coincide on k.

1.2. A solution y of L is algebraic if it belongs to an algebraic extension of k. In other words,
there is an irreducible polynomial P with coefficients in k& such that P(y) = 0. For example, if we
define y as a zero of the polynomial y* — z, then y is a solution of 22y’ = y. Work on characterising
such solutions has been performed for example by Pépin, Klein, Jordan, Fuchs, Baldassari & Dwork,
Singer (see e.g. [3, 6, 7] for further references).

1.3. A solution that is not algebraic is transcendental. An interesting class of solutions corre-
sponds to the notion of “integrability by quadratures”. A solution y of L is Liouvillian if it belongs
to a field K such that:

(1) K=K,2 -2 K, 2 Ky=Fk;
(2) K;=K;_1(n;) for i =1,...,n and:
(a) n; is algebraic over K;_;, or
(b) n; € K;_y (case of an integral), or
(c¢) mi/m: € K;_ (case of exponential of an integral).

For example, if we take L(y) = y” — 2(x1-}—1)y/ — (24 1)y = 0, then {exp[[ V1 + z],exp[— [ V1 + z]}

forms a basis of liouvillian solutions.

1.4. There is a very important subclass of the liouvillian solutions: we say that a solution
y is exponential if its logarithmic derivative is in k, i.e. y'/y € k. For example, the equation
y" — (2 + 42?)y = 0 has the solution y = e (y'/y = 2z). Methods for computing such solutions
have been given, for example, by Singer or Bronstein [2, 4].
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2. Differential Galois theory

The main known tool to compute liouvillian solutions of linear differential equations is differential
Galois theory. Roughly, the idea is to look at the group of transformations that send a solution of
the equation to another solution of the equation; from the knowledge of this group, one can derive
algebraic properties of the solutions. We now outline this formalism.

2.1. Picard-Vessiot extensions. To a given vector space of solutions of L, one associates a
field extension the following way. Since we work in a differential context, in order to adjoin an
element y to k we must also add all its derivatives. We write k(y) := k(y,y,y",...). We say
that K D k is a Picard-Vessiot extension if K = k(y1,...,Y,), where {y1,...,y,} is a basis of
the solution space of L(y) = 0, and K and k have the same field of constants C' (elements with
zero-derivative).

Then, we proceed as in classical Galois theory: The differential Galois group of L is the set
Gal(L) of the automorphisms of K that let k& point-wise fixed and that commute with the derivation
(this definition does not depend on K'). As in classical Galois theory, an element is in k if and
only if it is left fixed by Gal(L); also, the subfields of K appear as fixed fields of some algebraic
subgroup of Gal(L).

2.2. Galois group. Call V the vector space of solutions of L. As Gal(L) acts on V, we can
decompose its action on a basis of V. The image of a solution of L is still a solution of L, so
the image of an element of K is completely characterised by the images of the y; in the basis
{1, ...,y }. This provides a faithful matrix representation of degree n of the Galois group: Gal(L)
can be viewed as a subgroup of GL(n,C') (the group of invertible n X n matrices with entries in C').

In fact, Gal(L) is a linear algebraic group (its entries are solutions of a set of polynomial equa-
tions). So, the group has a structure of an algebraic variety. In particular, there is a component of
this variety in which lies the origin; we denote it by Gal(L)°. A key fact is that L has a liouvillian
solution if and only if Gal(L)° is solvable (Picard-Vessiot, Kolchin). In this sense, finding liouvillian
solutions is the differential analog of searching for solutions by radicals in the classical case.

2.3. Ricatti equation. A theorem of Lie-Kolchin on triangularization of matrix groups im-
plies that Gal(L)° is solvable if the elements of Gal(L)° have a common eigenvector y: Vo €

Gal(L)°,3c, € C,0(y) = ¢,y. As a consequence U(y?l) = %(y?l)l = % = y?l, which means that y'/y
is in the fixed field K° of Gal(L)°. This in turn implies that y’/y is algebraic over k.

As a consequence, there exists a u = y’/y that is a solution of P(u) = u™ +by_ju™ "' +---+by =0
and conversely, y = exp[ u] is a solution of L(y) = 0. If we let ¥’ = uy, then y'¥) = R;(u,«’,...)y,
with R, = R,_, + uR;_,. Replacing in L, we get that > a;R;(u,v,...) = 0: this is a non-linear
differential equation of order n — 1 satisfied by w, called the Ricatli equalion. For example, if
L = y" — ry, then the Ricatti equation is v’ + u* —r = 0.

Finding a liouvillian solution is thus reduced to finding an algebraic solution of the Ricatti
equation, which again splits into two subproblems: (1) find a bound for the degree N of P; (2)
given N, compute the coefficients of a polynomial P such that its zeroes are logarithmic derivatives
of solutions of L.

Problem (1) is solved by group-theoretic considerations. It follows from works of Kovacic or
Singer that there is a function f(n) such that N < f(n) (e.g., f(2) = 60, f(3) = 360, f(4) <
5040, f(5) < 25920, f(6) < 604800, ...). Recent works of Ulmer and Singer & Ulmer show that
sharp bounds are N < 12 for n = 2 and N < 36 for n = 3. We shall come back to this point later
and we now focus on the actual computation of the coefficients of the polynomial P.
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3. Computing a solution

3.1. Symmetric powers. Suppose for a moment that we work in an algebraic closure of k.
There, P has N zeroes ui,...,uy, and P(u) = [](u — u;). Since all zeroes of P are logarithmic
derivatives of solutions of L(y) = 0, there are N solutions y; such that the coefficient by_; satisfies

by_1 = z—i -4 % = % For any integer m, one can construct a linear differential equation
L®™ called the m-th symmetric power of L, whose solution space is spanned by all monomials of
degree m in the yi,...,y,. In particular, by_; is the logarithmic derivative of a solution of L@

our problem is now reduced to finding exponential solutions of L@ . Similar techniques yield the
other coefficients.

3.2. Reducible operators. Let D = %. Then, L(y) can be viewed as the action of the
operator Y a; D’ on y. Such operators form a non-commutative multiplicative ring D = k[D] in
the following way: for a € k, we have D(ay) = aD(y) + @'y, which give the multiplication rule on
D: Da = aD + d (D is called an Ore ring of type “derivation”). Before searching for solutions,
one should first search if L factors in D. For example, we have D* = D.D = (D + 1/z)(D — 1/z).
Algorithms performing such factorizations (or detecting reducibility) exist on C(z). The classical
algorithm dates back to Beke/Schlesinger (1895); Grigor’ev, Singer, or Van Hoeij have recently
proposed alternative methods.

In terms of solution space, Gal(L) has an invariant subspace of dimension m if and only if L has

a factor of order m. In that case, we say that Gal(L) (resp. L) is reducible.

3.3. Irreducible operators. Assume that Gal(L) is irreducible. We say that Gal(L) is im-
primitive if V is a direct sum of subspaces that are permuted transitively under the action of
Gal(L). Otherwise, it is primitive. In general, if Gal(L) is irreducible then: either Gal(L) is im-
primitive and 3y with [k(y'/y) : k] small, or Gal(L) is primitive finite and Jy with [k(y'/y) : k]
big, or Gal(L) is primitive infinite and there is no liouvillian solution. This is made precise by the
following theorems.

TaeoreM 1 (Kovacic, 1986). Let L be of order 2 and Gal(L) C SL(2,C), then:

(1) Gal(L) is reducible, or

(2) Gal(L) is imprimitive and then 3y with [k(y'/y) : k] = 2, or

(3) Gal(L) is primitive and Iy with [k(y'/y) : k] = 4,6,12, or

(4) Gal(L) = SL(2,C) and L(y) = 0 has no liouvillian solution.

THEOREM 2 (SINGER-ULMER, 1993). Let L be of order 3 and Gal(L) C SL(3,C), then:
(1) Gal(L) is reducible and L = L,(Ly) or

(2) Gal(L) is imprimitive and then 3y with [k(y'/y) : k]
(3) Gal(L) is primitive finite and Iy with [k(y'/y) : k] =
(4)

4) Else, L(y) = 0 has no liouvillian solutions.

=3, or
6,9,21,36, or

3.4. Algebraic solutions of L. In general, it is difficult to compute y from the knowledge
of y'/y (Abel’s problem), but one can compute y directly in the case of a known finite primitive
group because y is then algebraic. It follows that y is algebraic over k(y’/y), and one can show
that there is an integer m such that y™ € k(y'/y). Thus, if d is one of the possible degrees for
[k(y'/y) : k], the minimum polynomial of y is of the form P(y) = y™+as_1y™ V4. +a;y™ +ao.
This polynomial has the same number of coefficients as the minimum polynomial of an algebraic
solution of the Ricatti equation. To show that the Ricatti equation had an algebraic solution, we
showed that there was a subgroup of L with a common eigenvector. Such a subgroup is called
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1-reducible. To find the group or a solution, we must therefore find a 1-reducible subgroup H of
Gal(L) of minimal index. Suppose we have found such an H and let & = {oy,...,0,4} be a system
of representatives of Gal(L)/H. If y, is the eigenvector of H, then

P(y) = TT(y™ —a(ye)™)
eSS

Now, as the a; are rational, they are invariant under Gal(L). So, one can decompose the q;
in terms of invariants (or semi-invariants) of the group. Recall that a homogeneous polynomial
M(y1,...,y,)is called an invariant of the group if it is left invariant under the action of the group
(o(M)(y:) = M(o(y;)) = M(y;)). Now, to detect if the group has invariants of degree m (resp.
semi-invariants), one just has to search for rational solutions (resp. exponential solutions) of LO®™,
and we are almost done: as these solutions are given up to multiplication by constants, we just
adjust the constants so as to really obtain the desired polynomials. Examples and more precise
descriptions of this process are given in [5, 6].

4. Symmetric powers

The whole philosophy was to reduce the computation of Liouvillian solutions to the computa-
tion of exponential (and sometimes rational) solutions of some symmetric powers of L. In fact,
group-theoretic considerations show that one can reduce the presence of liouvillian solutions to the
reducibility of some symmetric powers. Conversely, reducibility of some symmetric powers helps
finding the Galois group of a given linear differential equation.

THEOREM 3 (SINGER-ULMER). Liouvillian solutions and symmelric powers are linked the fol-
lowing way:
— The equalion y" — ry has a liouvillian solution if and only if L®° is reducible.
— The equation L(y) = y" — a1y’ — apy = 0 has a Liouvillian solution if and only if L®* has
order less than 5 or is reducible AND (a) L®? has order 6 and is irreducible or (b) L®3
has a factor of order 4.
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