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Abstract

We study the limiting distribution of a parameter in product schemas of the type
y(u,z) = g(x)F(uw(z)), related to classical combinatorial constructions. When g(z) is
“negligible”, the limiting distribution in y(u, z) is the same as in F'(vw(z)). On the other
hand, when g is of “dominant importance”, the limiting distribution is shown to be exclu-
sively discrete, Gaussian or Gamma, according to F' and w.

1. Introduction

An important trend in asymptotic combinatorics is to classify limiting distributions appear-
ing in combinatorial schemas according to structural and analytic characteristics of combinatorial
constructions. The analysis of functional composition F(uw(z)), that translates into generating
functions the combinatorial operation of substitution, has been largely investigated [1, 2, 6, 5]. It
leads to discrete, or normal, or special distributions, according to analytic properties of F' and w.

We shall here consider the case of product schemas y(z,u) = g(z)F(uw(z)) studied by Drmota
and Soria [3]. Consider for example the two classical results on permutations: the number of
cycles of fixed length [ is asymptotically Poisson distributed, whereas the limiting distribution of
the number of cycles of length # [ is Gaussian. Let’s analyze these results from a “combinatorial
schema” standpoint: starting with the construction of permutations as Sets of Cycles of points
leads to the bivariate schema y(z,u) = exp(ulog {2-), hence [5] the Gaussian distribution of the
number of cycles (with no restriction) in a random permutation. Marking only cycles of fixed

length [ gives the product schema y(z,u) = exp(log == — le + u%l), where the factor of dominant

1

importance ;— exp(—“’"Tl) implies the discrete nature of the distribution, and the Set construction

in exp(u””Tl) determines that it is Poisson. On the other hand, the bivariate series for cycles of length
#1lis y(o,u) = exp(%l).exp(u(log = - ””Tl)), here the first factor is negligible, and the limiting
distribution is Gaussian as in the unrestricted case.

Given a bivariate series y(z,u) = Y ynrz"u®, consider the random variables X, satisfying
Pr(X, = k) = yar/ > Ynk. We are interested in the asymptotic density of X, (when n — o)
in a range around the expected value (k = EX,, + z/Var X,,).

For a product schema y(z,u) = g(z)F(uw(z)), we thus have to evaluate

vt _ i [lg(@)w(2)"
ve  [lg(x)F(w(z)

where f;, = [2¥]F(2).
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We always assume that the coeflicients of the Taylor expansions of g(z), w(z) and F(w(z))
can be evaluated, by saddle point method or singularity analysis, and in any case the asymptotic
behaviour of the coefficients depends on exact or approximate saddle points.

There are cases where the factor g(z) has no influence on the limiting distribution, i.e. the
limiting distribution of y(z, ) is the same as the limiting distribution of F(uw(z)). Conversely,
g(z) may be of dominant importance, and dictates the limiting distribution of y(z,u) to be either
Gaussian or Gamma or discrete. We also investigate some interesting cases where neither g(z)
dominates nor is dominated in y(z,u).

The notion of dominance can be formulated in terms of asymptotic behaviour of saddle points.
In order to be more precise we introduce the notion of dominance in a product of functions.

DEerINITION 1. Let f(z), g(x) be convergent generating functions with non-negative coefficients.
We say that f(z) dominates g(z) if [z”]f(2)g(z) ~ g(()[z"]f(z), (n — o0), where (, is the saddle
point of f(z) defined by ¢, f'(¢.) = nf((a)-

Obviously, if the radius of convergence of the first factor is smaller than that of the second
one, the first factor usually dominates. But if both factors have the same radius of convergence,
the situation is more involved. However this definition agrees with classical scalings: for example
exp(ﬁ) dominates ﬁlogﬁ ﬁ, and also ﬁ dominates log” ﬁ, etc.

In a bivariate schema y(z,u) = g(z)F(uw(z)), according as the limiting distribution is dictated

by the first or second factor, we shall say that g is dominating or dominated in y(z,u)

2. ¢ is dominated in y(z,u)

When ¢ is regular at the singular curve of F(uw(x)), the limiting distribution is shown to be
either Gaussian or discrete. But the situation of simultaneous singularities is more difficult to
handle. (In the following we shall refer to admissible functions in the sense of Hayman [9], and to
alg-log functions in the sense of Flajolet and Odlyzko [4].)

THEOREM 1. Suppose that F(z) is an admissible or alg-log function, with finite radius of conver-
gence R. Let w(r) = R and assume that w(z) and g(z) are regular al x = r (i.e. the radii of conver-
gence of w(x) and g(z) are greater than r). Then g(z) is dominated in y(z,u) = g(z)F(uw(z)), and
the limiting distribution is Gaussian with mean value ~ p,,(R)™'n and variance ~ o2 (R)p,(R)™>n.

THEOREM 2. Suppose that w(z) is an admissible or alg-log function, with finite radius of con-
vergence r such that w(r) = R is finite. Furthermore assume that F(y) is reqular at y = w(r) and
g(z) is regular at x = r. Then g(z) is dominated in y(z,u) = g(z)F(uw(z)) and has a discrete
limiting distribution, with Pr[X, = k] ~ kf, R*='/F'(R).

Apart from these two simple cases, the situation where two functions are singular is more com-
plex, and there is probably no general criterion to decide a-priori whether g(z) is dominated or
not. Nevertheless we can treat many special cases. For example, if g(z) and w(z) are alg-log
functions and F(w(z)) has an essential singularity at z = r then g(z) is usually dominated -e.g.
if g(z) = w(x) = = and F(z) = €*, g(x) is dominated in y(x,u))-. Yet, by scaling singularities
with the notion of dominance in Definition 1, we can expect the following “general” rule.

RULE 1. Suppose that g(z), w(z), and F(w(z)) are admissible or alg-log functions. If F(w(z))
dominates g(z), then g(z) is (usually) dominated in g(z)F(uw(z)).
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3. g is dominating in y(z,u)

Alternatively to the previous section, where the factor g(z) has actually no influence on the
asymptotic limit distribution of y(z,u) = ¢g(z)F(uw(z)), this section is devoted to the case where
g(z) is of dominant importance. This means that the saddle point ¢, of g(z), given by (,¢'((,) =
ng((,), can be used instead of the exact saddle points in the evaluation of the mean, variance and
probability. Hence we get, in the range of interest k£ >< E X,;:

Yo Fw(G))

Once again, the case of different radii of convergence is easy to handle.

THEOREM 3. Suppose that g(z) is admissible or alg-log and has finite radius of convergence r.
If w(z) and F(w(z)) are reqular at x = r, then g(z) is dominating in g(z)F(uw(z)) and has a
discrete limiting distribution with Pr[X, = k] ~ frw(r)*/F(w(r)).

In general we can expect a rule of the following kind, which is the converse statement of Rule 1.

RULE 2. Suppose that ¢g(z), w(z), and F(w(z)) are admissible or alg-log functions. If g(z)
dominates F(w(z)) then g(z) is (usually) dominating in g(z)F(uw(z)).

One very interesting thing in the dominating case is that there are only few kinds of limiting
distributions which can be classified in the following way if g(z) has finite radius of convergence.

THEOREM 4. Let g(x) be admissible or alg-log, with finite radius of convergence r, and saddle
point (,. Suppose that g(x) is dominating in y(z,u) = g(z)F(uw(z)), then only four situations can
appear:

a) If Jim w(z) = w(r) exists and F(x) is regular at w(r), then X, has a discrete limiting

distribution given by Pr[X, = k] ~ frw(r)*/F(w(r)).

b) If lim w(z) = oo and F(z) is entire and admissible, then X, is asymptotically normally
distributed, and E X,, ~ w((,)F'(w((,))/F(w((n))-

¢) If lim w(z) = w(r) exists and F(z) is admissible and singular al x = w(r), then X, is
asymptotically normally distributed with mean value expressed as in b).

d) If lim w(z) = w(r) exists and if F(z) is an alg-log function (with o > 0) which is singular at

x = w(r), then X,, is asymptotically Gamma distributed with parameter a and E X,, ~ a/log %%

4. Combinatorial Schemas

Many typical schemas y(z,u) = g(z)F(uw(z)) occurring in combinatorial structures related to
the “sequence-of” and “cycle-of” constructions, are discussed in [3]. Beside giving illustrations of
sections 2 and 3, we also investigate some cases where ¢ is neither dominated nor dominating in
y(z,u).

Consider the product schema y(z,u) = g(z)exp(uw(z)), which underlies the examples given in
section 1. In the case of cycles of length [, function ¢ has a finite radius of convergence, and w is
an entire function. Thus g is dominating, and the limit distribution is Poisson by Theorem 3-a.
On the other hand g is dominated for cycles of length # I, hence the Gaussian limit law.

Now consider the schema y(z,u) = g(x)m, and let 7 be the radius of convergence of
Flw(z)) = #(x) If ¢ is an entire function, it is dominated in y(z,u), whereas if ¢ is expo-
nential with radius of convergence r, it is dominating. An interesting situation (which actually
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happens for certain random mapping parameters [8]) arises when ¢ is an alg-log function with
radius of convergence r, and w(r) = 1: the limit law is shown to be hypergeometric [7, §].
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