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1. Preamble
And God said:

RULE 1: Do care about the size of @ !

RULE 2: Do not waste a factor of two!

RULE 3: Do trust the truth!

RULE 4: Do not raise the overall cost for speeding up rare cases — avoid lotteries!
RuLE 5: Correctness implies termination in due time!

RULE 6: Don’t forget the algorithms in object designs!

RuLe 7: Clean results by approzimate methods is sometimes much faster!

and he added: life will not be easy, since

IroN RULE: The development of fast algorithms is slow!

There are several algorithms that can benefit from exact division in a ring. A typical case is
Bareiss’ algorithm for performing Gaussian elimination on matrices with integral entries. Another
example is the computation of resultants using subresultants. All this and asymptotically fast
algorithms are given in [3].

We will describe algorithms for performing exact division of elements in a ring. The setting
of these algorithms is given in the recent Bible [2] (from which the Eight Commandments were
taken), which contains many fast algorithms for performing arithmetic in various rings or fields. In
particular, there is defined the @ symbol, which is pronounced “bounded” and is a synonym for

O(1).
2. Exact division

2.1. Theory. The problem is easy to state. Let f and g be two elements of a ring and suppose
there exists ¢ in the ring such that f = qg. We want to compute ¢ as fast as possible. For instance,
if f and g are integers, f with 2m words and g with m words, then classical division requires
approximately y,m? operations, where 7, is the typical constant measuring the cost of a basic
operation in the ring.

Jebelean [1] has devised an algorithm for this that requires %ﬁ;’omz operations, by using 2-adic
division starting from bottom words. In [2], a similar algorithm is given with same complexity, but

starting from the higher words. It was tempting to try to unify the two approaches.
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Suppose for instance that f and g are polynomials in F[y], where F is some field. The algorithm
of Jebelean on the lowest [ coefficients has cost 4({+1)({42)/2 and the algorithm on the upper part
has cost yok(k 4 1)/2. Since | = m — k, the total cost is minimized for [ = |m/2] and k = [m/2],
with a total cost of yom?.

This approach can be extended to the case of integer division with suitable modifications (in-
cluding a little overlap) and to Z[yy, ys, - .., y,] by interpolation techniques [3].

2.2. Algorithms and examples. Write:

f(AX) = fm_l‘Xm_l + fm—ZAXm_2 + -+ f07
g(X) = gn_lX"‘l + gn_2X"_2 + -4 g0

so that the quotient of f by g is:

q(X) = qm—nXm_n + qm_n_le_"_l + -+ q.

A Maple implementation of Schonhage’s algorithm for finding the coefficients ¢, _ny Gm_n_1,---,
Gm—n—k+1 is

# [ = fTm—1X"" 4+ [0

#g=g[n —1X""" 4+ g[0]

#q=qlm—n]X"" 4+ q[0]

A1<k<m-n+1.

schtabk := proc(fx, gx, x, k)

local q7 i7 j? Cg’ f7 g? m7 11;

f:=Pol2Tab(fx, x);

g:=Pol2Tab(gx, x);

m:=degree(fx, x)+1;

n:=degree(gx, x)+1;

cgi=1/g[n-1;

for i from m—n by —1 to m—n—k+1 do
q[i]:=fi+n—1]*cg;
for j from n—2 by —1 to m—k-i do

M+ =1[i-+i] —ali] e il

od;

od;

sum(q[’1’[*x"’1’, ’I’=m—-n—k+1..m—n);

end:

This algorithm is the ordinary algorithm for computing the quotient of two polynomials, except
that we need to use the coeflicients of each intermediary result £[] up to degree m-n-k+1, which
saves some time. The cost of this is easily seen to be vok(k 4+ 1)/2. Note that this algorithm does
not suppose that ¢ | f, as long as k is not too large.

Jebelean’s algorithm, taken from [1] is given below:

jebtabl := proc(fx, gx, x, 1)

local q, i, j, cg, f, g, m, n, K;
f:=Pol2Tab(fx, x);
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g:=Pol2Tab(gx, x);
m:=degree(fx, x)+1;
n:=degree(gx, x)+1;
cg:=1/g[0];
K:=m—-n+1;
for i from 0 to 1 do
qliji=cg* i
for j from 1 to 1-i do
Mlick3]:=fli-+]— il e[}
od;
od;
sum(q[’i’[*x"’i?, ?i’=0..1);
end:
For the explanation of the algorithm, we refer to the original paper [1]. The cost of this procedure
is 7ol({ 4+ 1)/2. The main procedure is:
# Assumes f has degree 2m — 1, g has degree m — 1 and f = gq with q of degree m.
ediv := proc(f, g, x)

local m, I, k, qj, gs;

m:=iquo(degree(f, x)+1, 2);
l:=iquo(m, 2);
k:=m-—I;
qj:=jebtabl(f, g, x, 1);
gs:=schtabk(f, g, x, k);
aj+gs

end:

the last missing procedure being:
Pol2Tab := proc(fx, x)

local f, i;

for i from 0 to degree(fx, x) do
fli]:=coeff(fx, x, i);
od;
op(f)
end:
Trying this, we see that:

N/ Maple V Release 2 (Ecole Polytechnique)
1IN I/1_. Copyright (c) 1981-1993 by the University of Waterloo.
\ MAPLE / All rights reserved. Maple and Maple V are registered
< ____ > trademarks of Waterloo Maple Software.

[ Type ? for help.
> £:=X"T7T+3*xX"6+6*%X"5+10%X"4+10*X"3+9*X " 2+7*X+4:
> g:=X"3+2%X"2+3%X+4:
> ediv(f,g,X);



2 3 4
1+X+X +X +X
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