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1. Introduction

This talk is a sequel to the talk Sizes of relations: a dynamic analysis by D. Gardy, and we
shall make references to its summary [4]. A presentation of the database problem and of the model
was given there, along with the dynamic study of the size of a relation obtained by projection of
an initial relation. This second talk is centred around joins, i.e. operations building a “derived”
relation from two initial relations. As was the case for projections, the joins can be described by
urn models [1]. Although the computations become quite involved, due to the fact that we deal
with bi-dimensional processes, the techniques are similar to those used for the projection.

This second talk begins by presenting in detail some points introduced in [4], such as the birth
and death processes describing the number of balls in an urn, then turns to join models. The
complete demonstrations are given in the full papers [2] (for the projections) and [3] (for the joins).

2. Urn models and processes

2.1. Urn models. We can describe a relation present in the database by an urn model, and
its size by a random allocation model counting the number of balls allocated according to a certain
scheme (see [4] in these proceedings). Now the equi- or semi-join of two relations R and S can be
modelled in a similar way: Let X be the join attribute, and d the number of values X can take; we
consider d distinguishable urns labelled by these values.

— We throw r red balls for the relation R, and s blue balls for the relation .S, according to the
rules reflecting the constraints on these two relations;

— We consider each urn in turn. If an urn has received 7 red balls and j blue balls, we put ¢
green balls in the urn for the equijoin, or ¢/;5, green balls for the semijoin;

— The total number of green balls is now the (equi- or semi-) join size.

Urn models were already encountered in the dynamic analysis of tries (see [5]), but there the
capacity of the urn varied in time.

2.2. Indicator functions. We introduce the following definitions (k is an integer-valued func-
tion; in the following it counts the number of balls in an urn):

$1(K) = Liso; ¢o(K) = K.

We shall use upper indices R and B to make precise the relations, or ball colours, we consider.
Thus the functions ¢f and ¢f are involved in the equijoin, and the functions ¢f and ¢ in the
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semijoin. We shall also use
Ei(¢):= E[¢(r))];  E}i(¢) = E[¢(s)d(kh)];  Zi:= Prlx} = 0].

2.3. Bi-dimensional processes. Assume that the stochastic processes describing the initial
relations R and S are known. There are three ways to combine them, according to the type of
correlation allowed on the relations R and 5:

(1) The processes may be correlated, in that, at each step, we either update one (and only one)
of the relations, or we make a search (query);

(2) The processes may be independent: at each step and for each relation, we can do an
insertion, a deletion or a search. In this model, it is possible to update two relations
simultaneously, or to query one relation and to update the other one;

(3) We may extend this second model to allow more general probabilities: we define a proba-
bility for query, and eight probabilities for updating one or two relations.

For each type of correlation, we can compute the expectation of the join size and the covariance
matrix of the bi-dimensional process (size of R, size of ).

3. Birth and death process
We now return to the processes describing the number of balls in an urn, either finite or infinite.

3.1. Infinite urns. The number of balls in one urn is (asymptotically) given by a birth and
death process with birth rate and individual death rate given by*

A0 =p0G. n(n =12,

The probability that a ball, present at time ¢;, survives at time ¢, is

t2
PS12 = exp [—/ M(S)dS] :
t1

The total number of balls inserted in one urn between times ¢; and t,, and not deleted at time ¢,
follows a Poisson distribution with parameter

n iz
P12 = E/ pI(U)pSLIz(Uatz) du.
i1

3.2. Bounded urns. Such an urn has é cells; define g := dé/n. At time ¢;, the number of balls
in any one urn follows (approximately) a binomial distribution with parameters § and fi(¢,)/5.
The next result is Lemma 3 of [2]:

ProprosITION 1. Given that we start with ky balls in the urn U; at time t,, the number of balls (1)
(t > t1) in the urn U; is described asymptotically by a birth and death process starting from ki,
with birth rate A\(1) = [0 — k()] fa(1), where fa(t) = pz(1)/[6 — fi(1)] is the birth rate in a cell, and
individual death rate f5(t) = pp(t)/ fi(1).

We can now analyze the distribution of the number of balls in one urn at time ¢,, conditioned
by the number of balls in the urn at time #; (see [2] for details).

1We recall that the expectation of the number of balls is asymptotically equal to nfi(t), with f; varying
according to the relation scheme.
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4. Size of a join

4.1. Theorem. Theorem 6.1 of [3] gives a characterisation of the size of a join as a non-
Markovian, Gaussian process of known expectation and covariance:

THEOREM 1. In the join model, the size S([nt]) of the join at time nt is asymptotically given by
a non-Markovian Gaussian process wilh

E[S([nt])] ~ nG(1) Cov(S51,9:) ~ nWg(1y,1s).
The relative error in the density is O(1//n).

4.2. Idea of the proof. The principle of the proof is the same as for the projection. A
fundamental result is Lemma 1 of [3], which we recall below.

Define ¥; = S0, d(K)(AL): the function x is relative to red balls, i.e., to the relation R, and
the function A is relative to blue balls, i.e., to the relation 5. The index ¢ denotes the number of
the urn, and the index 1 shows that we consider the situation at time ¢;. We define similarly Y5
for time ¢,.

ProrosiTiON 2. The mean of Y, and the covariance of Y, and Y, are given by

E(Y1) = dEi(¢)Ei(¥);
COV(Yl,Yz)IdE [@]Eig[ ] dE1’2[90]E1 W]

+ & [Eilgl Filg) CLl) + Bilv]EilY] Clilg] + CialelCiilv]
with
13l EPT = k1)p(k1) Y _[Pr(rh = ks|k} = k1) = Pr(sh = ka)]o(ks)

IEi’fz['] e ZAE

Proposition 2 of [3] gives the covariance for the “static” structure, when the sizes of the initial
relations are assumed known (“non-random” case):

EY) ~nF(f(t), fPt)); Cov(Y1,Ys) ~ n ¥ng(t, ts).

As the number of balls in the urns in no longer known with certainty, but is described by a
random variable, this introduces a perturbation on the join size, which can be computed. Lengthy
computations give the result.

4.3. Example. Let us take an example to illustrate our results: the equijoin when the urns for
both relations are unbounded and when, at each step, either we throw a ball, or we delete a ball, or
we make a search. Asymptotically, i.e., for n — +00, the expectation of the process size of equijoin
is

ZrTpl?
E[S([nt])] ~ n :
o
and its covariance is
Trrptipsi,pst T4t TpTrlils Thigt
COV(SuSz) ~n 1a LEELA + Boﬂl 2012% 1= 7a2 2$B$R t + —Ra; 20125;t1
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5. Conclusion

A natural direction for further research would be to implement a toolbox in a computer algebra
system such as Maple which, given the structure and dependencies of the initial relations, the kind
of relational operation, and the update operations on the database, would compute automatically
the moments of the process describing the projection or join size.
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