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Abstract
We consider a functional-differential equation of the form h,(z,u) = h(puz, u)h(quz, u),
where p,q > 0 with p+ ¢ = 1, h(z,1) = ¢* and h(0,u) = 1. This equation arises when
studying the number of phrases in the fundamental parsing algorithm due to Lempel and
Ziv. More precisely, it is shown that this problem is equivalent to a problem on digital trees,
which reduces to determining the asymptotics of the above equation.

1. The Lempel-Ziv parsing algorithm

The Lempel-Ziv parsing algorithm takes a word as input and partitions it into phrases (blocks)
of variable size. In this partition, each new phrase consists of an old phrase, as long as pos-
sible, together with a new letter. For instance, the string 11001010001000100 is parsed into
(1)(10)(0)(101)(00)(01)(000)(100). Replacing each new phrase by a pointer to the old phrase,
together with the new letter, yields a universal data compression algorithm [9]. Other applications
are tests of randomness, efficient transmission of data, etc [7, 8, 9].

0

Ficure 1. The digital tree associated to the string 11001010001000100

Different parameters can be associated to this parsing algorithm, to start with the input size
n and the number of phrases m = M,. It is also natural to associate a digital tree to an input
word, by interpreting the pointers of the compression algorithm as connections between parents and
children. The tree associated to our example string is shown below. The natural size m of a digital
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tree is its number of nodes, which corresponds to the number of insertions made and to the number
of phrases in the compressing algorithm. Moreover, the internal path length L,, corresponds to the
size n of the input word. Therefore, we have

(1) M, = max{m|L,, < n}.

If we suppose that the insertions are made randomly (this will be made precise), then L,, is
a random variable depending on m and from (1) it follows that the random variables M, in the
compression model and L,, in the digital tree model are linked by the formula

Pr(M, > m) = Pr(L,, <n).

Furthermore, the relation (1) is known as the renewal equation and from standard probability
theory [1], it follows that if L,, has a normal limit distribution, then so has M, , with EM, =
n/(EL,/n) and Var M, = VarL,/(EL,/n)*? In the next section we will show that this is
actually the case.

The probabilistic model we choose is the asymmetric Bernoulli model. That is, we choose
independently letters of a binary alphabet with respective probabilities p and ¢, where p, ¢ > 0 and
p+ g = 1. In the digital tree model, this induces a random insertion of the phrases, which occur
during the parsing. Now the inner path length of a digital tree is the sum of the inner path lengths
of its two subtrees plus its size. If we note H,,(u) = E[u”"], this yields
m—1 m 1
Ha() =0 3 ("0 ) P ) ),

Finally, by setting h(z,u) =Y, Hn(u)z™/m!, we get our functional equation:

(2) a2 u) = h(puz, uh(quz, u),
with h(z,1) = ¢* and h(0,u) = 1 as boundary conditions.

2. Analysis of the functional equation

We would like to transform the equation, so that it takes an additive form. If, for a moment, we
forget about the derivative, this can be done by studying the logarithm of A and the equation can
be rewritten as

(3) Inh(z,u) = Inh(puz,u) + In h(quz, u).

We have to verify that the logarithm of h exists. In this simple case this is straightforward and we
have the bound log h(z,u) = O(2**)), where

(pu)*™) 4 (qu)*™) = 1.

We remark that k(u) = 1 —logu/h + O(log” u), where h = —plog p — qlog ¢ denotes the entropy of
the alphabet.

In the original case, it is less straightforward to show that the logarithm exists and to obtain a
bound. In fact, we will do this, when u belongs to a real neighbourhood ¢ of 1 and when z belongs
to a polynomial cone C(D,d) = {z + iylz > 0A |y| < Dz’}, where D > 0 and 0 < § < 1. To put
the equation (1) in a form like (3), which is easier to manipulate, we need a new auxiliary function

f(z,u) = h(z,u)/h,(z,u). We obtain

(4) few = 1= (o ) )




Now f has expected polynomial order O(z'~*(*)), which should make this equation easier to study.
In fact, we have

THEOREM 1. There exist a convex polynomial cone C(D,6) of z and a real neighbourhood U of
u = 1, such that log h(z,u) exists, and log h(z,u) = O(z*")), uniformly for (z,u) € C(D,8) x U.
Moreover, all derivatives of log h(z,u) with respect to u exist and are of order O(z*")*¢) | for any
e > 0.

Proor. The theorem is at the heart of the analysis, but its proof is quite involved [6]. We will
content ourselves with giving some of the main ideas. Let D,, be the closed disk of centre 0 and
radius p=™, where p = max{p, ¢} < 1. Then Dy C D; C --- and the disks satisfy the fundamental

property

(5) 2 € Dyyr — D,y = puz,quz € Dy,

for m > 0. Moreover, as u is real, for each convex cone C(D,¢), a similar property is satisfied:
z€C(D,é)= puz,quz € C(D, ).

This will make it possible to use induction over the domains D,, N C(D,¢). Then by using (4)
we obtain an integral formula for f(z,u), when z € (D41 — D) N C(D,d), where the integrand
contains f(puz,u) and f(quz,u), with puz,quz € D,, N C(D,d). Estimations of this integral are
used to prove the theorem. [

As a consequence of the theorem we can bound the error term in the expansion of h(z,e’) by
using Taylor’s formula with integral rest. We obtain

2
h(z,€') = exp (z +X(2)t+ V(z)% + O(t?’z“e’))) .

The mean X(z) and variance V(z) can be computed in the Poisson model (using the Poisson
generating function h(z,e') = h(z,e")e™?), by using Mellin transform techniques [4]. This yields
X(z) = 255 +0(2),
Vi(z) = %g;—N + Azlog z 4+ O(z),

where A = 0 in the case p = ¢ = 1/2. We therefore obtain normal asymptotics
2
h(Z et/w/V(z))etX(z)/w/V(z) = exp <t_ 1+ O(Zk(u)—3/2)) .
’ 2

To complete the analysis, it is necessary to translate these asymptotic expansions back to obtain
the limit distribution for L,,. This is done by Cauchy’s formula. We have

Elub] = i’f{ h(z,u)dz.

- 2w zmtl
Here the contour is a big circle. It is possible to show [5] that the contribution of the part of

the contour outside the polynomial cone is exponentially small, and in view of the discussion in
Section 1, Jacquet and Szpankowski obtain the following theorem [4, 6]:

THEOREM 2. In the asymmeltric Bernoulli model, M, has a normal limit distribution of mean
EM, ~ nh/log,n and variance Var M,, ~ Ah®>n/log”n. In the case of a symmetric Bernoulli
model (p = q = 1/2), the variance becomes Var M,, ~ (C + ¢(log, n))n/logs n, where ¢ is a periodic
function of small amplitude and period 1.
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We remark that in the case of a symmetric Bernoulli model, A vanishes, and the following term
in the asymptotic expansion gives rise to the oscillating function in the result. We also remark
that the theory can be generalized to an alphabet with more letters; this would give functional
equations of the type

hz(Zv u) = h(plzu7 u) o 'h(puzua ’U,),
with v > 2,py,...,p, >0 and p; + ---+ p, = 1. However, v may not be equal to 1, because the
fundamental property (5) for the domains D,, fails in this case.
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