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Abstract

This talk gives a general overview of some analytic schemas related to counting the
number of components in combinatorial constructions over multiplicative structures.

1. Introduction

Each integer n can be uniquely, up to the order of factors, decomposed into a product of prime
factors: n = ngjgkp}ljv with p; < --- < pg, p; prime, and 7 > 1,k > 1. From a combinatorial
viewpoint, this decomposition is a multiset of prime numbers (components) whose product equals
n. Following this line, the problem of integer factorizations can be extended by considering other
sets of components, and other ways of counting the factors. For example two classical problems in
“Factorisatio Numerorum” are to count the number of factorizations of n into 2,3,4,..., the order
of factors being relevant [5] or irrelevant [7].

Hsien-Kuei Hwang’s presentation develops a framework for combinatorial constructions on mul-
tiplicative structures and their associated Dirichlet series, which shows a perfect similarity with
the now classical results in combinatorics for constructions on non labelled additive structures and
their associated power series (cf. [9]).

Enumeration problems and probability distributions of factors then rely on an analytic study
of Dirichlet series. Along the same line as for additive combinatorial structures (see e.g. [3, 4]),
Hwang analyses statistical properties of the number of factors in analytic schemas of exp-log form.
Precise results of asymptotic normality are given, using Perron’s formula and Hankel contours for
evaluating integrals. Some extensions to other classes of analytic schemas are also studied. The
content of this talk can be found in [4].

2. Combinatorial Constructions

A multiplicative combinatorial structure C is a set of objects @ € C with size |a| such that
for all n, the number ¢, of objects of size n is finite. The enumerating Dirichlet series C'(s) of
multiplicative class C is defined by C'(s) =3 cclal = 3,51 can™*.

Many combinatorial constructions on multiplicative combinatorial structures, related to integer
factorizations, translate into simple forms for the associated Dirichlet series. For example the
ordinary factorization on C: n = |ay|"|as|™ -+ |ax|™, a; # @;, a; € C, a; > 1 is associated to the
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Ficure 1. Combinatorial constructions and generating functions
For power series C(z) = ), 5 ¢n2", and for Dirichlet series C(s) = ) s, c,n~°. In the bivariate
functions, pny is the number of structures of size n with k components.

multiset construction M[C] of C, symbolically defined by M[C] = [],ec(e+a+0a®+ 0 +---). This
construction translates easily into Dirichlet series, namely
C(ks
) = exp (Z —(k )) .
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For example, taking C = P the set of prime numbers leads to Euler’s equality
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since every integer can be uniquely factored into a product of prime numbers.

Table 1 presents the Dirichlet series associated with ordinary factorization (Multiset), square-free
factorization (Set), ordered factorization (Sequence) and cyclic factorization (Cycle). They show a
perfect analogy with the corresponding power series for unlabelled structures. This table actually
presents bivariate series P(w,z) = Enykpmkwkz” and P(w,s) =3, P pw*n™* where variable w,
considered additively, marks the number of C-components.

3. Analytic schemas

Multiplicative compositions lead to analytic schemas with different types of singularities, accord-
ing to the construction and the Dirichlet series of the class of components.

If the components are 2,3,4,... then C(s) =3, ,,n° is equal to ((s) — 1, which is known to
have a simple pole at s = 1. On the other hand, if the components are prime numbers, M&bius
inversion applied to Euler’s equality (1) gives P(s) = 3" cpp™° = 345, @log ((ks), hence a
logarithmic singularity at s = 1 for P(s). We are thus faced with Dirichlet series having a polar
or a logarithmic singularity. For multiset and set constructions, this leads naturally to analytic
schemas of the form

K
s—=p

2)  P(w,s) = eV OU(w,s),  W(s) = —— 4 H(s) or W(s)=Klog ﬁ + H(s),
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where ¥(w,s) and H(s) satisfy some regularity conditions, whereas for sequence and cycle con-
structions, the schemas become

M w., s an w.,S8) =10 ;
5o p(wy T e and s Plws) =loe

3.1. Enumeration of factorizations. Given F(s) = > f,n™° the Dirichlet series associated
with some factorization problem (e.g. in “Factorisatio Numerorum”, F(s) = (2—((s)) ! or F(s) =
exp(>_(¢(ks)—1)/k) counts the number of ordered or unordered factorizations of n into integers >
2), the question is to find the asymptotic behaviour of the summatory function A(z) = 3" ., <, fa-

(3) P(w,s) = + H(w,s).

When F(s) has a polar singularity at s = p, with some further conditions, Ikehara showed [5]
that A(z) ~ Kz, and Delange [1] extended this result for F'(s) with logarithmic singularity. These
results, whereas with different techniques of proof, can be brought to Singularity Analysis [2] for
evaluating the coefficients of a power series with algebraic and logarithmic singularities.

On the other hand, for exponential singularities, as in F(s) = exp(-17), the saddle-point method
applies (as well as in the case of power series) to estimate the summatory function A(z) [6, 7).

3.2. Statistical properties of the number of factors. Considering the bivariate schemas
P(w, s) arising from multiplicative compositions where factors are marked by w, we want to asymp-
totically characterize the distribution of the number of factors : mean value, variance and other
moments; central and local limit theorems, probabilities of large deviations;...

More formally, from a Dirichlet series P(w,s) = Y, <, P,(w)n~*, where P,(w) are polynomial
in w with nonnegative coefficients, we shall study statistical properties of the random variable &,
counting the average number of objects of size < n with a given number of component, precisely

defined by
Yicren Li(1)
where [w™] P, (w) denotes the coefficient of w™ in Py(w).

Fach analytic schema described before leads to a Gaussian limit distribution [4]. In the following,
we concentrate on the exp-log schema.

4. Exp-log class
The exp-log schema corresponds to bivariate generating functions of the form
P(w,s) = Z P (w)n™* = VU (w, s).
n>1

Here, W (s) is a Dirichlet series with non negative coefficients with an abscissa of convergence p > 0
and can be written

1
W(s) = Klog —— + H(s), K >0
s—p
where H(s) is analytic in
Alp,e)=As|s=o+itl,o > p—c/V(1)}

with V(¢) = log(|¢| + 3) and ¢ > 0. Moreover ¥(w, s) is holomorphic for ®(s) > p— 6 with a 6 >0
and for |w| < 5. Some growth conditions on P(w,s) are needed in the domain A(p,c)\ [p — ¢, p].
Roughly speaking, the Dirichlet series s — P(w,s) has its dominant singularity at s = p, near
which it behaves like exp(Kwlog 12=).

1—
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From a Perron-like formula, these assumptions lead to an asymptotic expansion of the summatory
function A(z,w) =" s, Pe(w) as 2 — 400

o Ku_1 | % T;(w)
Az, w) = z’(logz) ]z:% T(Kw— ) (logz)

uniformly for |w| < 5, where Y;(w) is the j-th coefficient of the expansion of e*#(*)W(w,s)/s at
s = p. Thanks to Selberg’s method [8], this expansion translates to coefficients, giving

+O((logz)™"7")

Y [0 Pelw) w37 sl loslog ) )

52, log = = (log x)

where the k,, ; are polynomials of degree m — 1 defined from the T;(w).

From this last expression and thanks to general theorems by Hwang ([4], and see also Limit The-
orems for Combinatorial Structures in these proceedings), it is possible to derive a full asymptotic
expansion of the mean, variance and other moments, to show that the limit distribution is Gaussian
and to give its full asymptotic expansion (for the central and local limit theorem), and study large
deviations.

Application. Studying the random variable {2, counting the number of distinct divisors of a ran-
dom integer k € [1,n], that is Pr(Q, = m) = |{k: 1 < k < n,w(k) = m}| where w(k) denotes the
number of distinct prime factors of k, leads to a bivariate generating function P(w,s) of exp-log
type. The general results of the corresponding schema gives, among others,

E(Q,) ~loglogn, Var(Q,) ~ loglogn
and a Gaussian limit distribution as first stated by Erdés-Kac (1940).
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