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Abstract

This presentation concerns limiting distributions of parameters—Ilike the number of
components—in a variety of combinatorial objects. Under general analytic assumptions
on the moment generating function, Hwang obtains complete asymptotic expansions for
central and local limit theorems (expressing convergence to a Gaussian law), as well as
quantitative estimates for probabilities of large deviations.

1. Introduction

It has been well-known since Gontarov that the number of cycles in a random permutation of
size n has a Gaussian limiting distribution, with mean and variance both asymptotic to logn. A
similar asymptotic normality result (with a scaling factor of loglog n instead of log n) was obtained
by Erdés and Kac for the number of distinct prime factors of a random integer < n. These two
results belong to different areas and were first proved by different techniques. It is shown here that
they are in fact different facets of a common analytic structure.

A recent trend in asymptotic combinatorics is to explain similarity of distributions by similarity
of “structure” (see e.g. [1, 3, 6]). In various types of combinatorial schemas, Flajolet and Soria [4, 5]
proved a series of central limit theorems of the form

P{ Nn< },Hoo\/g/

There €2, is the number of components in a random object of size n, with mean g, and variance o2.
The methods of proof rely on complex analysis for evaluating characteristic functions combined with
continuity theorems for establishing convergence to the normal law. Using analytic techniques of
probability theory, Hwang [7] gives a precise quantification of asymptotic normality. He obtains
full asymptotic expansions for distribution functions and densities (this implies well-quantified
convergence rates), together with estimates on probabilities of large deviations from the mean.

e~ 12 qt.

2. Central and local limit theorems

The starting point is a general condition for the moment generating function M,(s) of a se-
quence {€,} of discrete random variables.

ConDITION 1. Assume that, uniformly for |s| < p with p > 0,

1
— Pr(Q. = ¢(n)u(s)+v (s) (1 < ))
)_E r(Q, = m) e™ +0 . , n — o0
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where u(s) and v(s) are analytic for |s| < p, w”(0) # 0, and where ¢(n) and &, tend to oo as
n — 00.

The rate of convergence to the normal distribution results from applying Esseen’s Theorem, a
standard tool of probability theory (see e.g. [2]), that relates the distance between two distribution
functions to the distance between corresponding characteristic functions.

THEOREM 1 (CONVERGENCE RATES). Under condition 1,

0 — [ 1 5 1 1
Fn(x)EPr(T<x):E/_ et/2dt+0(ﬁ—+m),

uniformly with respect to x as n — +o0o, where p, = ' (0)¢(n) and o2 = w"(0)p(n).

1/2 1/2 op

When convergence is slow (typically in applications the rate is of the order of n='/*, (logn)~
(loglog n)~1/2), it is useful to have a full asymptotic expansion. In fact, a slightly stronger condition
on the function u(s) of Condition 1 (“well-behavedness” of [7]) leads to a precise estimate on the
characteristic function around ¢ = 0, namely

Xa(t) = 121+ Y Py(it) /o)),

This permits in turn to obtain the asymptotic expansion for densities by means of Fourier inversion.

THEOREM 2 (LocAL LIMIT THEOREM). Under Condition 1, and if additionally u(s) is “well-
behaved” on [—im, +iT],

o Pr(2 i oy 2el) (;;),

On 0<hes ok Kn Ob(n)(v+l)/2
uniformly with respect to x as n — +oo, where

pr(z) = iPk(—<I>)(:L‘) and O(x)

—1*12 gy
dz €

Obtaining an asymptotic expansion for a central limit theorem is trickier, since the distribution
function of €2, is a step function as 2, is discrete. The jumps at a discrete set of points are reflected
by the “saw-tooth” function 1 — {«} (with {z} denoting the fractional part of ) and its repeated
integrals. This leads to an oscillating component in expansions. The proof uses the method of
Kubilius [8]. We only quote here a simplified version of the theorem, and refer to [7] for a complete

statement.

THEOREM 3 (CENTRAL LIMIT THEOREM). Under Condition 1, if u(s) is “well-behaved” on the
interval [—im, +iT],

emv2 & -I-wk(37)

Fo(z) ~ ®(z \/ﬁ Z

(n — o),

where T (x) are polynomials of degree 3k + 1 and wy(z) are periodic functions.
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3. Large deviations

Results of the preceding section deal with the behaviour of Q, at a distance O(o,) from the
mean. Probabilities of large deviations predict extreme cases, i.e., the situation when z is allowed
to be at a distance > o, from the mean.

It is known that analyticity of a moment generating function around 0 is associated with the
occurrence of exponential tails for the corresponding probability distribution by Markov’s inequality.
Like in [5], the argument may be adapted to the M, (s), providing Pr(|2, — p,| < zo,) = O(e™*),
with ¢ > 0, for all z > 0. Actually, a much more precise formula can be obtained by using a method
of Cramer—Kubilius [8]. It consists of two steps: the integral transform technique of associated
distributions, and a saddle-point estimate. The next theorem generalizes Cramer’s classical result
on large deviations for sums of independent, identically distributed random variables.

THEOREM 4 (LARGE DEVIATIONS FOR CENTRAL LIMIT THEOREM). Under Condition 1,

n

for x > 0, where Q(t) is a function analytic at 0 whose coefficients are explicitly computable. A
stmilar estimate holds for the symmetric side of the distribution corresponding to x < 0.

Hwang also proves an asymptotic expansion for Pr(£2,, = m), for m lying in the interval p, to(o?).
In this case the proof uses the saddle-point method applied to Laplace-type integrals.

THEOREM 5 (LARGE DEVIATIONS FOR LOCAL LIMIT THEOREM). Let m = p, + zo, with z =
o(\/¢(n)). Under the hypotheses of Theorem 4 and with the further assumption that e*"+) /eu(r)
“behaves like” a characteristic function, one has

e—%‘lﬂﬁ(”)Q(x/Un) Pk(.’E) $y+1_|_1 1
Pr(Q, = = 1 - 7 - = -
M =m) = e\t 2 Gy O G s ) )

where Py(z) is a polynomial of degree k.

4. Application to combinatorial schemas

Decomposable combinatorial objects are built from sets, sequences or cycles of components.
This is known to correspond to functional schemas of the form P(w,z) = F(w,C(z)). Here, C(z)
is the usual counting generating function of the component objects, and P(w, z) is the bivariate
generating function of the composite objects with w marking the number of components.

Let therefore P(w, z) = Enykpnkwkz” be such a function, so that p,; is the number of structures
of size n with k components; we are concerned with the asymptotic behaviour of the number of
components in a random structure of size n whose probability distribution is given by Pr(f, =
k) = par/ >k Pnk- Two major types of schemas are studied.

4.1. Exp-log schemas. These schemas are related to Set and Multisel constructions and they
are already known to lead to Gaussian limit distributions [4]. The general form is P(w,z) =
exp(wC(z) + S(w, 2)), where C(2) is a function of logarithmic type (¢ > 0 and K a constant)

1 . 1
C(Z):alogm‘Fﬁ +0<w) (z = p, 2 & [p, o)),

and S(w, z) is an analytic function for |z| < p 4 € and |w| < 1 + €, for some €,€ > 0.
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By singularity analysis, one gets for the moment generating function

M (s) = bmu(erucs) (1 ‘o ( 1 )) 7
log n

uniformly for small s when n — oo, with u(s) = €* — 1, ¢(n) = alogn and v(s) = K(e* — 1) +
S(e*,p)— S(1,p) +1og(I'(a)/I'(ae®)). Hence all the conditions of Theorems 1-5 are fulfilled in this
case.

Asymptotic normality of the number of cycles in a permutation or of the number of components
in a random mapping provide an illustration of exp-log schemas. Hwang notes that the same
process applies to Dirichlet series instead of power series (see Hwang’s “Factorisatio Numerorum”
in this volume). Thus the number of distinct prime factors of a random integer < n also fits into
this analytic schema.

4.2. Alg-log schemas. Another type of schema from [5],

P(w, 2) ! (1 ! )k
w. )= —— og —M—
T A wC() BT wC(z))
is related to Sequence and Cycle constructions and is again known to lead to Gaussian laws under
the conditions: k is a non-negative integer, a > 0, and C(z) attains 1 before becoming singular.

By singularity analysis, the moment generating function is shown to have the right form for
Theorems 1-5, with

o) o pe)Cple)
oDy M =me vls) = el T aE

Bender’s schema for meromorphic functions [1] also fits within this framework.

u(s) = —log

In conclusion very precise quantitative asymptotic normality results hold for many types of
combinatorial objects and number-theoretic functions.
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