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Abstract

Many mathematical formulze can be generalised by adding a new parameter ¢, leading
to what is called a g-analogue, because the original formula can be obtained as the limit
when ¢ tends to 1. We present here a combinatorial introduction to the g-calculus.

1. Partitions and words

1.1. Partitions. A partition A is a decreasing sequence (A, ..., A;) of positive integers: A; € N*
and \; > A4 for all i. The length of A is £()\) = k, its height is [A| = Yob_, Ai. If [A| = n, we say
that A is a partition of n. For all £, m € N, let

Pl,m)={X: LX) <L and A < m}.

It is possible to determine a partition A from the numbers m; = Card{j : A; = ¢} denoting the
multiplicity of ¢ in A. In this way, the partition A can be written as A = (1712™2...).
A nice way to represent a partition A is to use its Ferrers diagram

Dy={(,j)€Z’: 1<i<); and 1<j<{(N)}]

The number P({,m) can be viewed as P({,m) = {A\: D, C (m*)}. The conjugate partition of A
is the partition A’ whose Ferrers diagram is symmetric from D, with respect to the first bisecting

line. We have |X'| = |A| and (A) = A.

1.2. Gaussian polynomials. Ferrers diagrams enable to establish a correspondence between
partitions of P({,m) and paths joining (0,¢) to (m,0) with the steps (0, —1) and (1,0). Such paths
have m + £ steps (m horizontal and { vertical) so Card P(¢,m) = (™). To take into account the
height in this statistic, we introduce its generating function with respect to a new variable q. We
have

W @D @ =TTl -¢) k>0,
. Aepz(;,m)q RONO { 1.

Letting ¢ — 1 in this identity, we find again Card P({,m) = (mn-:e) This motivates the definition
of a g-analogue of the binomial coeflicients, denoted by

[m + ﬁ] _ (@)mte
l (Dm(9)e’
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and called Gaussian polynomials. They satisfy several g-properties like Pascal recurrences or sym-

metry.
By letting £ — oo in identity (1), we get

(2) P e D DI
A A1<m (q)m A: L(A)<m

This last equality is obtained from the conjugate partitions. Then letting m — oo, we find

1

Al _ ot = L
(3) ;q =Y p(n)g O

n>0

where p(n) is the total number of partitions of n.

1.3. Infinite products. Formula (2) can be refined by introducing a new variable z.

precisely, denoting

o0

('r)OO = H(l - -’qu)7

i=0

we have the identity

_ T megime | — 3 gt NI
GNP (H e ) 2 2 =g

mo,my,... >0 A L(A)<¢L

In the same vein, by expanding (—z)., we have

These two identities are sometimes called Euler identities.

Jacobi identily. The triple product identity of Jacobi is

(@)o(@)en(gz ™o = S (=127 (3).

nez

As a corollary, we have the formula

(4) (Q)ee = D _(=1)grCrtir?

nezn

(5) ()%, = S(=1)"(2n 4 1)g e+0r2,

neN

More

The first one is Euler’s pentagonal number theorem, and can be used with (3) to establish several

congruences relations satisfied by the partition numbers p(n).
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Ficure 1. With £ = 6 and m = 9, the partition A = (8,7,7,4,2,2) is associated to
the word w = 221122122211212.

2. Words

2.1. Correspondence between partitions and binary words. Consider A € P({,m). Its
Ferrers diagram can be considered as a path joining points (0,¢) and (m,0) by m horizontal steps
and ¢ vertical steps. We encode this path with a word on {1,2}*, associating a 1 for each vertical

step, a 2 for each horizontal step (see figure 1). This construction defines a correspondence between
P(l,m) and M({,m), the words of {1,2}* with £ “1” and m “2”.
We define the number of inversions of a word w in {1,2}* by

(6) Invw = Card{(¢,7): 1 <i<j<{l4m and 2=w;>w; =1}

We have Inv w = |A|, where w is the word obtained from A by the correspondence, thus

Inv(w): Tn—l—ﬁ
Z q l / '

weM(£,m)

Another interesting parameter is the major index defined by

(7) Majw= > i,

WD Wit

and surprisingly, its generating function is the same as the one of Inv.

2.2. Statistics on words over n letters. The previous discussion finds a natural generali-
sation by considering M(ay,...,a,), the set of words with n letters where the ¢-th letter appears
exactly a; times. The length of such a word w is ay + -- -+ a@,. The parameters Invw and Majw
are defined as in (6) and (7). The Z-statistic (called like this because of Zeilberger work [2]) of a
word w is defined as

2w)= Y Majw

1<i<j<n

where w;; is the word obtained from w by keeping only the i-th and the j-th letter. These
parameters satisfy

Z g™ @) = Z M) = Z 70 = [m 4o q an] . ((q)a1+...+an

5
ar,...,Q e
weM(ay,...,an) weM(ay,...,an) weM(ay,...,an) L y q)a1 (q)a"

providing a g-analogue of multinomial coefficients.
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3. Basic hypergeometric functions

We use the notations

a =l a; = 1 —ai a =l a; = (a)OO
(@)oo = (5 ¢)oo g(l q7'), (a)n = (a;9)n (aq™) oo

and we define the basic hypergeometric series as

(G ) =

n=0

The ¢ — 1 limit in this expression leads to a classical hypergeometric series, thus we have defined
a g-analogue of hypergeometric series. A good survey of basic hypergeometric series can be found
in [3].

3.1. The ¢-binomial theorem. The relation (1 — z)1¢¢(a;2z) = (1 — ax),¢0(a; gz) together
with 1¢(a;0) = 1 leads to the ¢g-binomial theorem:

(az)s

()0

(8) 1¢0(a;z) =

By setting @ = ¢~ then 2 — —z¢™", we deduce
n—1 ] n n R
[[1+g2)= [ ]q(2)x’“-
i=0 k=0 k

When ¢ — 1, this leads to the classical binomial theorem.

3.2. Heine transforms. Like classical hypergeometric functions, the basic hypergeometric
functions satisfy several identities. A first family is the Heine transforms:

avﬁ . _ (ﬁ)oo(a'r)oo < ";’/ﬁ,.f . )
2¢1< ~ 735) = (7)00(55)00 21 ar
By
A A o
(0 2) = (50)., (11208 28,
Y (7)o / 7
3.3. Pfaff-Saalschutz ¢-theorem. This result applies to functions of the type s¢,. For all
non-negative integer n, we have

b\ (c/a)u(e/b),
(9) son( Sl sa) = N

¢, %q
There exists several equivalent forms of this theorem. By letting n — +o00 in (9), we obtain the
Gauss g-theorem

 (Oole/ab)e

Another corollary of the Pfaff-Saalschiitz ¢g-theorem is the g-formula of Chu-Vandermonde, obtained
by setting a = ¢"*', b = ¢7* and ¢ = ¢™*! in (9)

Xk:(—l)iqi(i—l)/ﬂ(m—n)i ntifmtkl _fk+m—n—1]
' k—1 k

i=0 t

c "ab

2¢1< a,b C) (¢/@)oo(e/b)co
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There exists several generalizations of the Pfaff-Saalschiitz ¢-theorem. One is called the Dougall
g-theorem, it applies to functions of the type g¢-.
4. g-analogues of usual tools

4.1. g-derivative. The ¢-derivative of a function f is defined as

() = flqt)
(1—q)t ~

The formula of the classical derivative have their ¢-analogues with respect to the ¢-derivative.

5qf(t) =

4.2. g-integration. The function ¢(¢) = fot f(z)d,x must satisfy 6,9 = f, so

g(t) —g(qt) = (1 — q) f(1)
g(qt) — g(q*t) = qt(1 — q) f(q1)

thus g() = g(t) — 9(0) = 3,50 ¢"1(1 — q) f(¢"t), and we define
[ S@ e =10 - 0 X 0 s

Like the classical integral, there exists a g-formula of integration by parts. There are several ways
of defining an improper integral, for example

[ rwai= -0 X e wma [ gwae= [ 0

nez
are g-analogues of [7° f(1)dL.

4.3. ¢-differential equations. The ¢-differential equation é, f(¢) = f(¢) admits the solution

__Jfey o )
M= == = T o
thus the solution f with f(0) =1 is
! (1—-¢)

= e~ 2

(the last identity is obtained from the ¢-binomial theorem (8) with ¢ = 0 and z = ¢(1—¢)) providing
a g-analogue of the expansion of exp(t).
As for the g-differential equation 6, f(t) = f(qt), the solution which takes the value 1 at 0 is

Ey(1) = (—1(1 — q)) zq 1(‘q)

the last identity being a consequence of the g-binomial theorem applied with a = —#(1 — ¢)/z and
& — 0. This second g-analogue of the expansion of exp(?) satisfy the obvious relation e,(¢)E,(—t) =
1. Nevertheless, there does not exist any simple relation between e,(z)e,(y), E,(z)E,(y) and
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e,(z +y), E,(x +y). A g-analogue of the relation exp(z + y) = exp(z)exp(y) is given by the
formula . .
= [liso( + ¢"y
i)y (y) = 3 A=t D),
n=0 Hk:l 1—g¢

obtained from the g-binomial theorem with @ = —y/z and = z(1 — ¢).

4.4. The ¢g-gamma function. The ¢g-gamma function is defined as

(¢)oo

T(s)=>5-(1-¢)°,  se€C\{0,-1,-2,...},
(¢°)o0
which tends to I'(s) as ¢ — 1. The functional equation of I'; is
1—-¢°
I(s+1) = 1—¢ Ly (s),

and since I'j(1) = 1, we have for all positive integer n

Fq(n + 1) = kli[l 11__qq = (1(3);),17

which is a g-analogue of I'(n 4+ 1) = n!. The function logI',(z) is convex for z > 0. An integral
representation of I'; is

1/(1-q)
T,(s) = / 1B, (—qt) d,t.
0
There also exists a g-analogue of the Gauss duplication formula.

4.5. The ¢-beta function. An equivalent form of the g-binomial theorem is

! t I,(2)T
/ tx—l (q )00 dqt — q(‘r) q(y)’ (%(x) > 0)
This expression can be used to define the most well known and the most useful g-analogue of the
beta function.
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