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Abstract

This talk gives a general introduction to the asymptotic study of harmonic sums arising
in many concrete applications, especially the analysis of algorithms.

1. Introduction

Mellin transform is a precious tool in analytic number theory and in algorithmic analysis as the
growth order of the quantity involved is usually polynomial. Given a locally integrable function

f(t) on (0,00), the Mellin transform M|[f(t);s] of f is defined by [11, Ch. III]

Myl i= [ 2@ da.

whenever the integral converges. An essential feature of the function M[f(x);s] is that its domain
of analyticity is usually an infinite strip —a < Rs < f, the two boundaries —a, § being determined,
respectively, by the asymptotic behaviours of f(z) when the parameter z — 0% and # — co. More
precisely,

a =sup{a : f(z)=0(2"),z — 07}, and B=sup{b: f(z)=0(z7"),z — oc}.

Thus the inversion formula

1 c+ioo
(1) J@)= o= [ e MIslds (—a<e<p)
offers the flexibility of capturing the asymptotic behaviours of f(z) as z gets small or large by
merely shifting the line of integration (here Rs = ¢) to the left or to the right, respectively, and by
collecting the contributions of the singularities encountered (usually poles).

Globally, the important step of “transforming” the given source (function, sequence, etc.) by
considering either the associated weighted sums (ordinary/exponential generating function, Dirich-
let series, factorial series, etc) or weighted integrals (Laplace, Fourier, Mellin, Hilbert, etc) has the
effect of smoothing our “raw data” which becomes more manageable, at least from an analytic
point of view.

In view of illustrating the application of Mellin transform to harmonic sums, this talk is mainly
example-oriented.
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2. Basic Properties

Let f, M[f;s],a, be as in the previous section. Then, cf. [11, Ch. III],

(1) [analyticity] M[f;s] is analytic in the fundamental strip —a < Rs < 3;
(2) [harmonic sums] For any sequences {A;} and {u},

M[Z/\kf,ukt ] (Z/\ku )M (z);s];

(3) [Riemann-Lebesgue lemma] If s = ¢ 4 it, where —a < o < 3, then
hm Mf(z);0+it] =

] —
(4) [inversion formula] Under certain regularity conditions,
flz)~+ Z Res [M[f(z);s]z™% s = ],
wEeS
as ¢ — 0% (the + sign being taken) or 2 — oo (the — sign), where S denotes the set of
all singularities (poles) of M[f(z);s] to the left (z — 0%) or to the right (z — co) of the
fundamental strip.
3. Two Examples

ExampLE. Find the asymptotic behaviour of

= Zd(k)e"” as z — 0,Rz >0,

E>1

where d(k) = 3" 4, 1 denotes the number of divisors of k. By Property (2),

M[F(z);s] = | Y d(k) Mle™*;s] = (*(s)T'(s) (Rs > 1),
E>1

where ( denotes Riemann’s zeta function and I' Fuler’s Gamma function. Standard facts about
these two functions [10] and Cauchy’s residue theorem lead to the following expansion due to
Wigert, cf. [9, p. 163],

(2) F(az)wllogl—}-l-}-l—z Boi_ joe-s (z — 0,Rz > 0)
e Ca w4 5o 2k(2Kk)! ’ ’

the By being the Bernoulli numbers.
Remark by Hwang. From (2), we obtain

Zd log — + + - (z~1,|2| < 1),

k>1

and, in a purely formal way (transferring to coefficient), cf. [4],

E d(k)=nlogn+ (2y—-1)n+---,

1<k<n

the determination of the error term constitutes the well-known Dirichlet divisor problem [9, Ch.

XI1].

68



ExampLE. Find the asymptotic behaviour of

F(a:):Z(l—e‘xﬂk) as = — oo, |argz| < m/2,
k>0
Again, by Property (2), we obtain
M[F(z);s]= [ Y 28| M[1—e";s] = — I'(s) (-1 < Rs <0)
3~ 1 1 _ 25 *

E>0

Thus, by the inversion formula (1) and Cauchy’s theorem,
1
F(e)=logy 5+ o+ QUogya) + R(z) (2 = oo, argal < 7/2)
where Q(u) is a continuous periodic function whose Fourier series is given by
1

Q) = - oo (ka) j—

log 2 kezvio] log 2

and R(z) = O(a=™™) for any M > 0.
Remark by Hwang. The error term R(z) can be easily replaced by an asymptotic expansion as
follows.

R _ 1 /+ZOO F() —sd /+ZOO —sd _ —a2kg
() = 27t 1-— 57 ZQm z) s_—Ze ’

3 —ico E>1 E>1

the interchange of the sum and the integral being justified by absolute convergence. This expression
for R(x) gives not only an asymptotic expansion but also an exact formula for F(z) as long as
Rz > 0.

4. Three Applications to the Analysis of Algorithms

EXAMPLE (AVERAGE HEIGHT OF BINARY (OR PLANAR) TREES). The problem in question [1]
(after some reductions) is the asymptotic behaviour of

Sn
P 1= as n — oo,
where A, = L£(*"77) are the Catalan numbers and

e = ;;d l(n+?lk)_2(;?F)+("—?l*)}

By elementary approximations (using Stirling’s formula), we obtain

4 1
i = =200(n) + a() +0 (252,

where g;(n) = Gy(1/n), with Gy(z) = 3=, ktd(k)e=**. Applying Mellin transform to G,(z) and

after some simplification, we obtain [1]

" = \/ﬁ_bro(kz/gﬁ") (n = o0).
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EXAMPLE (AVERAGE EXTERNAL PATH LENGTH IN A TRIE). Let ¢, denote the expected path
length of a random trie with n keys. Then [3, 6, 7] {,, satisfies {; = {; = 0 and

to=n+2" Y (Z)(ﬁkwn_k) (n=2,3,4,...).

0<k<n

The associated exponential generating function satisfies
Uz) = Z n—n!z" = 2(e" — 1) 4 20(2/2)e!?,
Thus

b= (Z) 1ogs = S -2 =T a - o),

and the result of Example 2 gives [6]

gl
log 2

{, = nlog,n + (% + ) n+ Q(log, n)n + O(1) (n — o0).

Two different approaches leading to full asymptotic expansions for £, are outlined in [2].

EXAMPLE (AVERAGE NUMBER OF CARRY PROPAGATIONS). Let {(z,y) denote the number of
carry propagations when adding two numbers z and y and

Pop=47"#{(x,y) : 0< 2,y < 2% 4(z,y) >k} (n,k 20).

The quantity of interest is ¢, = > ;5o Pnx, as n — oo, which reduces to [5]

" 1 1 Y log* n
t"zz[z]<1—2_1—z+zk/2k+l):Z(l_e /2)+O( n )

E>0 E>1

where in the last step the localization of the smallest (in modulus) zero of the polynomials 1 — z +
2% /2841 is needed. As in Example 2, we have [5]

log*n

v 1
tnzlogzn+@—§+62(log2n)+0( ) (n — o0).

Remark by Hwang. More calculations show that the O-term can be replaced by an asymptotic
expansion of the form

> on 32 mej(logyn)log’ n,

E>1 0<j<k

the 7 ;j(u) being periodic functions in w.
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5. Some Harmonic Sums

Let {\:} and {p} be two given sequences. Let f(z) be exponentially small at infinity and

.T)Nkaxak ($_>0+70:a0<a1<042<"',Oék—>00).
k>0

This assumption implies [11, p. 153] that the function M[f(z);s] admits meromorphic continuation
into the whole s-plane with simple poles at —ay, the residues being f;, for £ = 0,1,2,.... From
this fact, we can deduce the following asymptotics as z — 0%, cf. [2].

(1) [Euler-Maclaurin-Barnes formula]

S f(nz) ~—/0°°f()dt+f Y (e (x — 0*);

n>1 k>1

D= f(na) ~ Y (1= 2 fl(—an)a™ (= 0F);

n>1 E>0

Ef(Q",r) ~ f(0)log, % + @ + 1022 é6(log, x Z _fk g (z — 01),

n>1 k>1

SR CES Py S (O

1 :
olu) = M| f;2kni/log2]e 2k,
() = fogz, 3 MUfi2hri/log?

where

the latter being a continuous periodic function of period 1.

Many other types of harmonic power sums can be found in [8, Ch. III].

6. Some Amusing Sums
Let F(z) =3, .51 f((m* + n?)z). To derive an asymptotic expansion for F(z), as z — 0F, we

observe that

M{F(a);s] = ( Y (m?+ n)) MIf(a);s] = %Mwm

m,n>1

where ©(z) = Y, 5, e "%, The singularities of M[@%(z); s] to the right of the vertical line ®s = 1
(included) are determined by the asymptotic behaviour of ©(z) as « — 0%, for which we apply
once again Mellin transform. We thus obtain the functional equation, cf. [9, §2.6],

(3) o =523+ /20 (3) @0,

the last term being exponentially small as z — 0%. Once the singularities of the function M[0%(z); s]
are explicited, the asymptotic behaviour of F(z) can easily be derived.
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In the same manner, we can consider harmonic sums of the types

S Walf(ne), S |log,n] f(nz),. ..

n>1 n>1
7. Conclusion

Besides harmonic sums, Mellin transform finds applications to the asymptotics of integrals (espe-
cially of convolution type), to the asymptotic behaviour of generating functions, Laplace transform,
etc, and to many interesting identities and functional equations like (3).
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