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1. Introduction

Among the parameters that can be defined on relational databases, the sizes of the relations,
either present in the database or computed by application of a relational operator, have long been
recognized as important parameters in query optimization.

The basic objects we' consider are relations, which are sets of (distinct) tuples. They can be
seen as tables: a row represents a tuple, and the number of lines is the number of elements of the
relation (its size); the columns are called the atiributes. The projection of a relation on a subset
of the set of attributes is a new relation, obtained by suppressing the corresponding columns, then
all the duplicated rows in the resulting table: We keep only one instance of each tuple. We give in
Figure 1 an instance of a relation R[X,Y] and its projection denoted wx(R) on the attribute X.

Let us now consider two relations R[X,Y] and S[X, Z] with a common attribute X. The equijoin
of R and S on their common attribute X, denoted R v« 5, has three attributes X, Y and Z; it
is composed of all triples (z,y, z) such that (z,y) belongs to R and (z,z) belongs to S (see again
Figure 1).

The semijoin is another operator on relations; although it can be defined using the projection
and equijoin: R[X,Y] > S[X,Z] = mxy(R > 5) = R v 7mx(5) (Figure 1 presents instances of
R S and 5S> R).

We use the terms initial relation for the relations to which we apply a relational algebra operator
(projection, equijoin or semijoin), and derived relation for the relation resulting from the operation.

We gave in former papers [4, 5] conditions which ensure that, in the static cases (i.e., at a given
time), the size of a derived relation, obtained by a projection, an equijoin or a semijoin, follows
a normal limiting distribution. Owur goal here is to extend these results when the database is
submitted to a sequence of queries and updates.

In the static case, we study the conditional distribution of the sizes of the derived relations
obtained by a projection or by a join, assuming that the sizes of the initial relations are known.
In the dynamic case, we want to study the influence of updates and queries on the sizes of initial
relations and derived relations. To this effect, we shall use a modelization in terms of urn models.

2. Urn models and databases

We consider a sequence of d urns, each urn being labelled with a distinct value of the attribute
X. To each tuple of the relation R, we associate a ball labelled by the value of the tuple on the
column X; this ball falls into the corresponding urn. An equivalent way of seeing this phenomenon

!The original articles by D. Gardy and G. Louchard can be found in [6, 7].
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Ficure 1. Examples of relations R/X, Y] and S/X,Z] with the projection mx(R) of
R on X, the equijoin of R and 5 on X and the semijoins of R and 5, and S and R.

is to consider instead that we have a finite supply of balls, and that we allocate them at random
among the d urns, each trial being independent of the others. Each ball then receives the label of
the urn it falls into. After coupling all the tuples of the initial relation R with urns, some urns are
empty and some contain at least one ball. The number of urns with at least one ball is exactly the
number of tuples in the projection of the relation R.

In the rest of the paper, we shall use indifferently the terms relation size and number of balls or
number of tuples, and the terms projection size and number of non-empty urns.

3. Static models

Here, we consider the case of a free relation, i.e., there is total independence between the values
taken by different tuples. In this framework, we obtain the following theorems [4, 8, 9].

THEOREM 1 ([4]). Let R[X,Y] be a free relation with a uniform probability distribution on the
domain of atitribute X. Then the probability distribution of the size of the projection of R on
attribute X, conditioned by the size 1 = Adx + o(dx) of relation R with A a positive constant is
asymplolically normal when dx — oo. The asymptotic mean and variance are given by p = podx
and 0? = oldx where py and o2 are constants that depend on the probability distribution on attribute

Y.

We consider relations where attribute X is a key, i.e., in a given instance of the relation the
xz-value of a tuple uniquely determines its y-value.

THEOREM 2 ([4]). Let R[X,Y] be a relation with a key X, and S[X,Z] a relation with a key
U. We assume that the probability distribution on Dx (the finite domain on which a probability
distribution is defined for X ) is uniform. The probability distributions on Dy and Dy are arbitrary.
The sizes v and s of the relations R and S are assumed to satisfy r < dx, dx = o(r®?), and
s = Bdx(1 + o(1)). Then the probability distribution of the size of the semijoin of R and S on
attribute X, conditioned by the sizes of R and S, is asymptotically normal. The mean and variance
have for asymptotic values p = (1 — e~ B)r and o? = r((e? — 1)/e?® — rB/dxe?P).

We denote p; 4 the probability that the ¢th element of the domain is selected when choosing at
random an element of a finite domain D of size d. Let Ag(t) = [1,<;<q((1+ piat)/(1+ pia)) be the

112



generating function associated with the probabilities of the set of distinct items for relation E. We

assume that Ag(t) # (1+1)/2.

THEOREM 3 ([9, 8]). Let R[X,Y] (resp. S[X, Z]) be a relation with a keyY (resp. Z). The sizes
r and s of the relations R and S are assumed to satisfy r = Adx + o(dx) and s = Bdx + o(dx).
Let gr(y) (resp. gs(z)) be the function gr(y) = y%(y) (resp. gs(z) = z%(z)) Constants A and
B are such that: lim,_,.gr(y) > A and lim,_,.,g9s(z) > B. We assume thal the probability
distribution on Dx is uniform. Then the probability distribution of the size of the equijoin of R
and S on attribute X, is asymptotically normal when dx — oo. The mean and variance have for

asymptolic values y = 0 = R ABdx.

4. Dynamic models

We shall denote by pz, pp and pg the probability of making an insertion, a deletion or a query.
We can choose non-equal probabilities for insertion and deletion, as long as the probability of an
insertion is at least equal to the probability of a deletion: pr > pp.

If we choose to perform a deletion, the conditional probability of deleting a given ball is 1/n, n
being the number of balls at this time.

Assuming that the urn size is infinite corresponds, in terms of relational database, to a relation
with a key on the attribute suppressed in the projection. As we also want to study relations without
keys, we need to extend the models to the case where the urns have a finite capacity (there are ¢
places for balls). If we choose to perform an insertion, we must give the conditional probability
of inserting a ball into an urn, and this is the place where the infinite and finite models differ. In
the infinite urn model, each urn has the same probability of getting the new ball: 1/d, with d the
number of urns. In the finite urn model, we can view each urn as a collection of § distinguishable
cells, and each empty cell, whatever the urn it belongs to, has the same conditional probability
of receiving the ball, knowing that we have chosen to perform an insertion. Thus the probability
that we put a ball in urn V; is v;/(dé — n) where v; is the number of empty cells in V; and n is the
number of balls at this time.

We denote by = the weak convergence of random function in the space of all right-continuous
functions having left limits and endowed with the Skorohod metric (see Billingsley [1]). All con-
vergences will be defined for n — 4.

We study two related stochastic processes, describing respectively the number of balls denoted
by P, and size of the projection (number of non-empty urns), denoted by Q; we shall show that
each of these processes has a deterministic component of order n, and a random component of order
N

Let W be the number of balls at some time. We might choose the current number of steps
(number of queries or updates) as a measure for the time, which would then belong to the interval
[0,2n]. However, we shall study the asymptotic behaviour of W when the time goes to infinity, and
it is interesting to change the time scale by choosing a time nt for ¢ € [0,2], and to normalize the
random variable W. For all the models presented below, the number of tuples W has an expectation
and a variance of order n, and we can show that, for a suitable function f; related to the type of
process, and assuming that we start from an empty structure at time 0:

W([nt]) — nfi(t)
NG

where the process X(t) is a Markovian Gaussian process whose covariance is denoted f5(s,?),
s <1[6].

= X (1), 0<t<2,
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THEOREM 4 ([6]). The size S([nt]) of the projection at time nt is asymptotically a non-Marko-
vian Gaussian process such that

S([ntl) ~ nG(1) + VX (1),
S([nt])] ~ nG(1),
S(nt])] ~ nd (),

bl
[
where X,(t) is a non-Markovian Gaussian process whose covariance is denoted Vg(s,t) and where

the functions G, ® and Vg can be given explicitly and depend on urn models (infinite or bounded)
and on functions fi(t) and f5(s,t). The relative error in the density is O(1//n).

5. Example

The processes can be divided in two families:

(1) the weighted structure in the sense of Flajolet et al. [3], Louchard [10], with a possibility
function given by pos(D) = k for a k-size structure (there are k£ ways of deleting an element
in a structure composed from k elements!);

(2) the classical unweighted structure.

We study the unweighted structure family and we consider updates (Z + D) and queries (Q) with
arrival at a relation of size 2nT + s{/n at the time 2n. We assume that we start from an empty
structure at time 0. The mean and variance corresponding to one step are given by

T = pr — po, o’ =pr+pp — T
and

W([mi]/)ﬁ— nat oBB(1) + %t’

with BB a Brownian Bridge. The expectation and covariance are given by

at ,5(2 1)

fals,t) =0 s <.

2 bl =

Now, if we assume that the urns have an infinite capacity, we get for the process size of the
projection:

S([nt]) ~ nG(1) + V/nX(0),
G(1) = a(l - e7™/*) 4 %te—ﬂ/a

where X (1) is a non-Markovian Gaussian process whose covariance is

_ Tiy (11 \PD/T 1 ,'073/5 " Q—t
\IJR(tl,tz) = e~ %(tittz)/e [a <€T(5) — 1) — Tt (t_l) + U2¥ :
2

where a = %.
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6. Sketch of the proof

The first step is to study the process P describing the number of tuples in the initial relation. In
the cases we are interested in, P happens to be a Gaussian process with a deterministic part Py,
on which is superimposed a random part P;:

P:P0+P1.

The process P, follows a deterministic curve nfi(t); the function f; is the expectation of the
number of balls (or tuples in the initial relation), and the process P; is a Markovian Gaussian
process of order y/n.

The process P: number of tuples determines another process Q: size of the projection. Before
considering Q, we shall study another process Qg, defined as the size of the projection of a relation
R, when the size of R is given by the process P, (which is a first-order approximation of P). To this
effect, we define two random variables, say Y; and Y5, which are simply the size of the projection at
different times ¢; and ¢,. The covariance Cov(Y],Y,) will allow us to characterize Qq as a process
composed of a deterministic part G(¢) and a random part /nV(2).

We then consider the process P obtained by superimposing P; on Py. We can again define two
random variables size of the projection at the times t; and 15; let us call them §; and S,. It is
possible to write their covariance as

Cov(Sy,52) = Cov(Y1,Ys) + v(t1)v(t2) folty, t2)

for a suitable function (%), fo(t1,12) being the covariance of the process P; taken at different times
t; and t,. The covariance of Y; and Y, thus characterizes the “static” part, and the term added to
it to get the covariance of 5; and 55 comes from the fact that the number of tuples P is itself a
Gaussian process.

Once we have the covariance of the sizes of the derived relation at times ¢; and {5, the next part
is to show that the final process Q is still asymptotically a Gaussian process. More precisely, we
show that @ has a part Qg of order n coming from Py, on which is added a random part Q; of
order y/n coming from P, and from P;:

Q=09+ 9;.

6.1. Cov(Y],Y,) for a non-random static structure. For each urn model (bounded or un-
bounded), there exist two functions F(z) and ¥yg(1,t2) such that, if we consider the size of the
projection of a relation, itself of size nfi(t), the asymptotic values of its expectation at time ¢,
E(Y1), and of its covariance at distinct times ¢; and ¢,, Cov(Y},Y>), are:

E(Y1) ~ nF(fi(1)),
Cov(Y1,Ys) ~ nUng(t,1s).

6.1.1. Unbounded urns
The one ball survival probability between ¢; and ¢, is denoted by ps; o(t1,42) (= 1if {4 = 15).
Then, we obtain with Py a deterministic process

E(Py) = nfi(t),
F(X)=a (1—6_X/°‘),

_f1(t) ( _ fa(t1,t2) _ f1(t2) _ 1t 4+ (t2)
€

Ung(ti,ty) = ce” = —e e ) — f1(t1)psi 2€ g
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6.1.2. Bounded urns
We can view the content of an urn with v(t) balls as a population of v(t) type 1 (balls) individuals
and ¢ — v(t) type 2 (empty places) individuals. Let

P j(11,12) = Pr[individual of type ¢ at time ¢; is of type j at time ¢,].

0o~ (-3 ).

Vanlin ) = (1- )Y [apz,2 (-2 (ap v - %)fl(tl)ﬁ)] ,

Then, we obtain:

where 6 = aé.

6.2. Cov(51,52). Y1 and Y, denote the size of the projection of a relation R at the times ¢;
and {5, when the number of tuples of R is given by the process Py. 5; and 5, denote the same
quantities when the number of tuples of R is given by the process P. We first compute the variation
of Cov(Y1,Y>) introduced by assuming that the numbers of tuples are no longer fixed, but Gaussian
random variables; this gives nWc(4;,13). Then we compute the actual covariance of S; and S5 and
we show that it is of the type nWg(t,1,); we also prove that the size of the projection is then a
Gaussian process.

As the process P is obtained by adding a process Py of order \/n to the process Py, itself of order
n, the number n; of balls at time ¢; is given by:

m=n (i) + =) + 000,

where 6, is a Gaussian random variable with mean 0 and covariance fs(s, ).
Setting v(t) = F'(fi(1)), we obtain:

BV~ o0 (PO )+ %wl)) ,

iz ro (1),

b

Vet ts) = Yyg(ly,to) + @1(7517152)\/% + 7,

for some @, and 3,.
We know from previous work [4] that for a known size of the initial relation R at times ¢; and ¢,
(static case), the projection size Y; and Y, are asymptotically Gaussian. Then for any & and &,

E e | p <exp[i(£1E[Y1] FEEW]) — S(E0*(V) + 266 Cov(Yi, Vo) + EggQ(YQ))]) .

Plugging the modified values for E[Y;] and E[Y>] into this equation, and substituting Cov(Y;,Y3)
by n¥s(t1,12) (and similarly for 6(Y;) and 0%(Y>)), we obtain:

E [ei(§151+5252)] ~ At g [EB(tl,tg)] 7

where the term B(t;,1,) contains all the contribution from the Gaussian random variables 6; and

6, and is of the form B(t1,15) = ({101 + (26,).
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This leads to:
E €i<5151+5252>] ~exp(i(€,nG (1) + EnG(ty))

1
- i(ffn‘l’R(tlat2) + 26,6V R(Ly, o) + EnV (1, 1))
1
+ cubic terms in &, &+ O <%))
Now remember that we are actually interested in the normalized process S'([nt]) = (S([nt]) —

nG(t))/+/n. Substituting & by & /v/n and & by &, /\/n, we get:

; / 1 ’ / 1 1 ’ 1
B[] exp [~ 3(62Wn(t 1) + 2616 Wn(0 1) + €2¥a(t 1)+ 0 ()|

2 NG
Then we state a new version, more precise, of theorem 4:

THEOREM 5 ([6]). In the projection model, the size S([nt]) of the projection at time nt is asymp-
totically a non-Markovian Gaussian process with

S([nt]) ~ nG(1) + vnX:(1),
E[S([nt))] ~ nG(1), with  G(1) = F(/,(1)),
Cov(S([nta]), S([nta])) ~ n¥p(ls,ts), with Cg(ly,ls) = Cnr(ty,bs)+ folly, 2)7(1)7 (L),
Var[S([nt])] ~ n®(1), with  ®(1) = Wg(l,1) = Uyr(t, 1) + 721 fo(L, 1),

where X,(t) is a non-Markovian Gaussian process whose covariance is denoted Vg(s,t) and where
the functions G, ® and Vg can be given explicitly and depend of urn models (infinite or bounded)
and on functions fi(t) and fy(s,t). The relative error in the density is O(1/y/n).

7. Projection maximum

We have shown that the process @ happens to be a Gaussian process X (¢) superimposed on a
deterministic process G(¢):

S([ni]) = G() + X (1)
If we look for its maximum m = max{G(¢) + X (¢)}, and for the time ¢* at which this maximum

occurs, it is equivalent to searching for the hitting time of X (¢) to the absorbing boundary m—G(t).
A theorem of Daniels [2] leads to the result.
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