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1. Introduction

The purpose of this talk is to study the behaviour of several classical statistics on words, such
as the number of descents, the number of excedances, the major index, when the strict inequalities
required in their definitions are relaxed to include some equalities!. Those new statistics are defined
on classes of words with repetitions.

Let X* be the free monoid generated by a totally ordered alphabet X that for convenience we
take as being the subset [r] = {1,2,...,7} (r > 1) of the positive integers. X is a fixed non-empty
set on which a total ordering D is defined. If z,y € X and (z,y) € D we write z <p y or simply
z < y if no confusion can arise. D need not be the standard ordering on [r]. We also have a fixed
integer, k, such that 0 < k£ < r and j = r — k. The letters 1,...,5 will be called small and the
letters 5+ 1,...,7 large. We say that D is compatible with k if, for all z large and y small, we have
x > y. We also introduce a small letter * which is greater than any small letter of X.

A word w' is said to be a rearrangement of the word w = x5, - - -z, if it can be obtained from
w by permuting the letters z,,zs,...,2,, in some order. The set of all the rearrangements of a
word w will be denoted C'(w). Such a set necessarily contains a unique word v = 4,9, - - - Y, Whose
letter are in non-decreasing order: y; < yo < --- < y,,. It will be convenient to denote @ the unique
non-decreasing word in the class C'(w).

Let w = x129-- -, be a word and let W = v = y,ys - - - ¥, be its non-decreasing rearrangement.
The number of excedances, exc w, and the number of descents, des w, of the word w are classically

defined as

excw = #{i:1<i<m,z; >y},
desw=#{i:1<i<m-—1,2; > x4},

while the major index, majw, is the sum of the ¢’s such that 1 <:<m — 1 and z; > z;4,.

MacMahon [8, p. 186] proved that for each rearrangement class C'(v) and each integer j there are
as many words w € C'(v) such that excw = j as there are words w’ € C'(v) such that desw’ = j.

Let ¢ = (¢1,...,¢;) and d = (dy,...,d;) be two vectors with positive integer components. Also
let c=c+---+¢,d=d + -+ d; and ¢+ d = m. The class of all m!/(¢;!---¢;ldy!---dy!)
rearrangements of the word 1° - .- 5% (5 + 1)% - .r% will be denoted by R(c,d) or by C'(v) where
v is a given word in R(c,d).

Let w = 2125 -2, be a word and let @ = v = y,¥s - - - ¥, be its non-decreasing rearrangement
(with respect to a given ordering D). We say that the word w has a k-excedance at i (1 << m),

!The original articles by J. Clarke and D. Foata can be found in [2, 3, 4].
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if either z; > y;, or #; = y; and x; large. We also say that w has a k-descent at ¢ (1 < i < m), if
either x; > ;41, or &; = ;41 and z; large (by convention, z,,41 = *). The number of k-excedances
and k-descents of a word w are denoted by exc, w and des, w. The k-major indez, maj, w, is the
sum of all ¢’s (1 <14 < m) such that ¢ is a k-descent.

In [2] R. J. Clarke and D. Foata showed that for each ordering D compatible with k& > 0 the
statistics “des,” and “exc,” were equidistributed on each rearrangement class R(c,d). Actually,
they constructed a bijection ®; of each rearrangement class R(c, d) onto itself that satisfied des, w =
excy @, (w), identically. Hence for each rearrangement class R(c,d) the generating polynomials
St and Y, 1% (w € R(c,d)) are equal. Let A, q(¢) be their common value. It was also
shown that the generating function for those polynomials could be expressed as

uvd (I4v1)* (1 +vg)°
1 T A =Nr ,
v 2 g Aol = L
where u® = uf* - - u]cj and v3 = of* .o,

As usual, let (a; ¢), denote the ¢g-ascending factorial

1 if n =0,
(a;q)n:{

(1-a)(1-aq) - (1—ag"') ifn>1.

Then, a natural g-analogue of (1) can read

ucve (—qv1;9)s - - - (—quis q)
0V alg) = Y Ei 0)..
2 Tgogan o) = L g

(2)

The motivation of the talk is to extend Han’s construction [6] to weighted words. This consists,
first, in finding an appropriate extension “den;” of the Denert statistic “den” [5], defined by Han,
then, of constructing an explicit bijection p of each rearrangement class R(c,d) onto itself such
that the equality over the bivariate statistics (desy, maj,)(w) = (excy, deng)p(w) holds identically.

2. The “den;” statistic

Let S = {1,...,7} be the set of small elements of X and let L = {j 4+ 1,...,r} be the set of
large elements of X. Let sya, be the largest small letter of X (under the ordering D). Besides the
small letter x that satisfies s, <p * <p b for any letter b greater than s,.,, we also adjoin to X
a large letter oo that is greater than every letter of X. Define Xt to be X U {,00}. Similarly,
LT = LU{o<} and S* = S U {*}.

Let @ and b be elements of X*t. Then we define the cyclic interval ]a, b] by

a,b ifa <0,
(3) Ja, 0] = {(X+\](b,a] otherwise.

Thus Ja, a] = §. Further, we define Ja, b]; by

Ja,b] ifa,be ST,
Ja,b] U @ ifae LT, be ST,
(4) la,b]r = < Ja,b] \ b ifae ST, be Lt

]]a,b]]Ua\SIQJ ifa,be Lt, a#b,
Xt ifa=be L*.




The elements of X+ can be visualized as points on a circle (or a square!) as shown on Fig. 1. The
k-cyclic intervals Ja, b]; must be read counterclockwise. The path 4—on the S*-part shows that

whenever a is small, the interval ]a, b], is of the form “(a,...” (or “la,...” in the French notation)
so that a ¢]a,b]r. On the contrary, the path - on the L*-part shows that Ja,b];, = [a,... and
so a €]a,b]; whenever a is large; but Ja,b], = ...,b) (or ..., b[) whenever b is large and b €]a, b];.

When D is compatible with k, the small letters lie between oo and *, and the large ones between
* and oo, still reading the square counterclockwise; also *, oo], = L.

(e @]
a L1 L Ib
St Lt
b L1 J L Ja
*
Fig. 1
Let w = zy25 - - - 2,, be a word on the letters in X. Put 2,41 = *, ;40 = 00. Fore=1,...,m+2

let Fact,w be the left factor z;24---2;_; of w and for each subset B of X let Fact;w N B be the
subword of Fact;w consisting only of those letters of Fact;w that are in B. Furthermore, let
|Fact;w N B| denote the length of that subword.

Now let w = 9195+ ¥, the non-decreasing rearrangement of a word w = z,z5---z,,. The
deny-coding of w is defined to be the sequence (s;)1<;<mt1, Where

(5) _ J | Fact; wn]zg, ] if 1 <4 <m,
" lwn ) if i = m+ 1,
and the statistic den; w to be

m+1

(6) denyw =Y ;.
i=1

THEOREM 1. Let v be a fized word in X* and let D and E be total orderings on X = [r]. Assume
that both D and E are compatible with k. Then there is a bijection p on C(v) = R(c,d) onto ilself
such that for all w € C(v),

(desy p,maj, p)w = (des; g, maj, p)u(w).

THEOREM 2. Let v be a fized word in X* and let D be an ordering on X compatible with k.
Then there is a bijection p on C(v) onto itself such that for all w € C(v),

(desy, maj, )w = (excg, deny )p(w).

THEOREM 3. Let v be a fired word in X* and let D and E be total orderings on X = [r]. Then
there is a bijection § on C(v) = R(c,d) onto itself such that for all w € C(v),

(excy p,deny p)w = (excy g, deny g)é(w).

Now we calculate the distribution of (des;, maj,). Let

Ac,d(t7Q) _ Etdesk wqmajkw (’UJ € R(C,d))

w
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be the generating function for the pair (des;, maj,) over the class R(c,d).

THEOREM 4. The factorial generating function for the polynomials A a(t,q) satisfies (2).

3. The Han transposition

In this section we describe the “Han transposition”, a way of manipulating biwords that preserves
the statistics “den” and “exc”.

A biword is a two rowed matrix o = (%), where u and v are words in X* of the same length.
The biword a is called a circuit if w is a rearrangement of w. A circuit a = (giizim) is called a
cycle, if y,, = zy and y; = 2,4y fori=1,...,m— 1. "

Let z,y,a,b € X U {*}. Then a and b are neighbours with respect to (z,y) if both a and b are
in Ja,b], or neither in Ja, b];. Otherwise, @ and b are strangers with respect to (z,y).

Consider the biword (;‘)), where v = Y195 -+ Yy, and w = x5+ - ,,. An ordering D of X being
given, we define

exck(u):|{i:1§i§m and x; >y; or a; =y € LT};
w

u m
eny (w) ;| act; wN]a;, iz

If @ is the non-decreasing rearrangement of w, then clearly excy (¥) = excy w; and by (5) and (6)
deny w = deny, (¥) + |w N L|. Note that if D is compatible with &, den; w = deny, ().
Let (%) be a biword of length two. Following Han [6] we define the Han transposition T by

yx . .
(7) () _ (#7) if a and b are neighbours,
ab (*”) if @ and b are strangers.

If o= (3) = (21927%) is a biword of length m and 1 < i < m, we define T;a to be the biword
obtained when the biword 8 = (ii:i) consisting of the ¢-th and (¢4 1)th columns of a is replaced
by T3.
LEMMA 1. Let oo = (") be a biword of length m and let 1 < i < m. Then
(excy,deny )T = (excy, deny )a.

Let z;, zo be two distinct letters of X U {x} and v be a word of length m — 1 in the alphabet
X U{#}\ {22}. Denote by C(v, z1, 22) the set of all biwords a = (%), where u is the non-decreasing
rearrangement of vz, and w is any rearrangement of vz;. Thus u has one occurrence of z,, while w
has none. However the occurrences of the other letters are the same, except for z; that occurs one
more time in w than in w.

If z5 is the i-th letter in the word w, the product 1}, ---T;4,7; will transform o into a biword
of the form o' = (Zl,;) Then, either ' has no occurrence of y;, in which case y; = z; and w’
must be a rearrangement of u’, or y; does occur in w'. In the former case, define 7, (o) = (Zl,’ii)
In the latter case, the rightmost occurrence of g, in o' is, say, its ¢-th letter. Then the product
T o+ Ty Ty transforms o into a biword of the form o = (ZI,I,Z:Z) Again, either u” has no
occurrence of y,, in which case y, = z; and w” must be a rearrangement of u”, or y, does occur in
”. In the former case, define T, (a) = (*,?**?). In the latter case, we continue the same procedure

w'z1y1
as before by moving the rightmost occurrence of y, in «” to the right of u”. After finitely many
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u(l)yl—l"'y122
wlypyayy
y; = z and w" is a rearrangement of u{"). Note that «") may be empty. Define u; = u"), w; = w,

vy = Yi_1 Y2y and

O] e
U Y- Y172 U1V12
(8) T =" - .
Yo Y2l w1210
Thus for each a in C(v, 2, z9) there is a well-defined product of Han transpositions that maps «
onto a biword of the form (?**?), where u; is the non-decreasing rearrangement of w; with no

steps we reach a biword a!) = ( ), where u(" has no occurrence of y;. Then necessarily

wi121v1

occurrence of z;. Denote by D(v, 21, z9) the set of biwords of the previous form (;‘)112;?)

LemMA 2. The mapping T,, : C(v, 21, 22) — D(v, 21, 25) is a bijection.

U1v122

The inverse mapping applied to the biword <w1z1v1) in D(v, 21, z9) is derived by moving to the left,
to the first position where the resulting word is non-decreasing, successively the first, the second,
..., the last letter z; of the word v, 25, the move being made by means of the Han transpositions
as defined in (7). The inverse mapping is then independent of z, and will be denoted by 7.

4. The den-maj bijection

In this section we give the main tools for proving Theorem 2. We assume that the ordering D is
compatible with k, and in fact that D is the standard ordering on X = [r]. If y is a letter and w a
non-decreasing word, we will write y < w (resp. y < w), if y is less than (resp. less than or equal
to) all the letters in w.

As for the first fundamental transformation described in Cartier and Foata [1] or in Lothaire |7,
chap. 10] and Han’s fundamental bijection [6] we need an appropriate word factorization. That
factorization can be built as follows.

Let z € X U{*} and let v be a word in that alphabet, then the word zv is said to be k-dominant,
if z is large and all letters in v are greater than or equal to z, or if z is small and small letters in v
are less than or equal to z.

Every word in the alphabet X U {+} has a unique factorization (zvy, 250, ..., 2,0, ) (the 2;’s are
letters and the v;’s words), called its k-factorization, having the following properties:

(1) w = 21012909+ - 2,0}
(2) each factor z;v; is k-dominant (1 < i < n);

(3) there exists an integer [ (1 < < n) such that 2y > 25 > -+ > 2z > % and 241 < 242 <
<z, < %

The k-factorization of a word w may be obtained as follows: a letter z of w is called a k-record, if
either z is large and all letters to the left of z are larger than z, or z is small and all small letters
to the left of z are smaller than z. The k-factorizalion of w is then obtained by cutting w before
each k-record.

The main property of the k-factorization on which our transformation is based is the following:
let (z1v1, 2202, ...,2,0,) be the k-factorization of a word w. Then for each ¢ = 1,...,n — 1 no
letter in the left factor (zyvy,...,2v;) is equal to z;4, or is strictly between z; and z;4,. Let w,
be any rearrangement of that factor; then the k-factorization of (wy2;41vi41 - - - 2,0, ) has the same
rightmost (n — ¢) factors (z;419i41,...,2,0,) as w and the same rightmost (n — ¢ + 1) k-records
Ziy Zig1y ey Zn S W.

Consider a biword a = (“"2%

2, where:

(1) wy, us, wy are words in the alphabet X U {x};
(2) w; is the non-decreasing rearrangement of wy;
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(3) z is a k-record of the word w;zus.

Such a biword is called a supercycle. A supercycle is said to be initial, if u; and w; are empty.
The notion of final supercycle will be defined shortly.

LeMMA 3. If a is a supercycle, the factorization

- U1 Us X
g a=( ],

wy
where u, is the non-decreasing rearrangement of some left factor of the bottom word of o and where
z is a k-record of the bottom word, is unique. The factorization (9) is called the canonical form of
a.

Let a be a supercycle written in its canonical form as in (9) and let (z,v1, 2202, ..., 2,v,) be the
k-factorizarion of zu,. Then the following factorization of a, indicated by vertical bars,

(10) a= < i 20 )

w1 Zn Un
is well defined. Call it the k-factorization of the supercycle a. The positive integer n, which is the
number of factors in the k-factorization of zu,, is called the index of a and denoted by index(a).
A supercycle a is said final, if its index is equal to 1.

Let a be a supercycle as shown in (10), supposed to be non final, so that n > 2. With the
notation of (8) the left factor (**"**?) of the supercycle a is an element of D(uivy,21,25). Apply

wWi121v1

vy Zg
zZ1 U

Vs Z3
Zy Uy

"

the inverse transformation 77! to that left factor. We get a biword (*}) € C(u vy, 21,22). Then
form the supercycle

0 uf v, 00
(11) a_< , o vn).

Replacing the only occurrence of z5 in u{ by 2; transforms u} into a true rearrangement u) of wj.
Furthermore, ) is non-decreasing and we then obtain a supercycle

u v, 00
12 "= ! " .
(12) o= ( r )
Moreover, the above expression derived from the k-factorization of a is precisely the k-factorization

of o’ and the rightmost k-record of w] is equal to z;. Finally, index(a’) = n— 1. Thus the mapping
T : a+— o is well defined and satisfies

Zy  Ug

11)2 2’3 EEEEY
Zg  Ug

(13) index(7(a)) < index(a),
if @ is not final.

LEMMA 4. Let v a non-decreasing word in the alphabet X U {*} and let S(v) be the set of the
supercycles a = (lfulf‘;uf), whose bottom word wizu, is a rearrangement of v. If a is not initial,
there is a unique B € S(v) such that 7(f) = a and index(a) <index(3).

LEMMA 5. For each supercycle o which is not final, we have

(excy,deny)T(a) = (excy,deny)a.

U*00
w*

LEMMA 6. If w is a word in the alphabet X and o = (**%°) is an initial supercycle, then

(excy,deny)a = (desg, maj, Ja = (desy, maj, )w.
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The bijection of Theorem 2 is constructed as follows:

(1) Let w = zy25 -2, = @1u be a word in the alphabet X = [r]; form the initial supercycle
a=(7)

(2) Apply the mapping 7 to « iteratively until a final supercycle is reached. This makes sense
because of (13). Furthermore, when applying 7 iteratively, the letter x remains the rightmost
letter in all the supercycles within the iteration. Denote by @ = (“:aof) the final supercycle
obtained. Then W is the non-decreasing rearrangement of w and w;

(3) Define p by p(w) = .

Theorem 2 follows from lemma (5) and lemma (6).

9

ExaMPLE. Consider the order 1 <2 <3 < % <4 <5< oo (k=2 and 4,5 large) and start with
the word w = 4,4,5,1,3,1,2,3,5, so that (indicating k-factorization by vertical bars) the initial

supercycle is
(451 | 3 1235+ | o0
T\ 445 |1 31235 | «

First, T-1 (320 = T\, (521 = (329), so that

445 445 454

s (145 |3 ] 1235% |
T\ 454 |1 ]31235 | «

(in the notation of (11)). To obtain o/ = 7(«) we have to replace z, = 1 by z; = 4, so that

o — o = 445 |3 | 1235% | o
275" 7\ 454 |1 | 31235 ¥ )

Next T_1<4453) — T1T2T3<4453) — (3445) and

4541 4541 4514

, (3445 | 1235% | oo
4514 [ 31235 | « /-

To get the next supercycle we have to replace z; = 3 by z; = 1, so that
(1445 | 1235% |
27T\ 4514 | 31235 | « /-
Next the transformation 77! to be applied to (}21°123%%) is (TsTeToTs)(TuTsTs)(TsTyTs )(ToT5Ty),

451431235
_1(14451235%\ _ (112344455
as we have to move the second 1, 2, 3 and * to the left. We then get T7'(,: 155 505) = (1s1418252)5

so that

s (1123 %4455 |
451413235 | = )°

Finally, * on the top row is to be replaced by the penultimate k-record, i.e., 3. We get

- 112334455 | o©
-\ 451413235 *

Thus p(w) =4,5,1,4,1,3,2,3,5. We can verify that

(desy, maj, )w = (desy, maj, )a = (excy,deny )a = (excy, deny)a = (excy, deny, )p(w) = (4,18).
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