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Rice’s method is designed to estimate sums

1 ot =31 (1)

k=0

where the sequence f, can be extended as an analytic function ¢(n). The asymptotics of the
sequence f, are assumed to be known, and the problem is to obtain the asymptotic behaviour of
the sequence D f,,. The obvious bound

IDf,| < 2" max|fi|

is often disappointing, due to cancellation phenomena and an accurate evaluation of the f;’s cannot
provide a direct estimate of the D f,’s. Hence more sophisticated techniques, presented in this talk,
are needed. The complete paper is presented in [3].

Many problems in the analysis of algorithms lead to a sequence D f,. In the sixties, Knuth [4,

p. 131] encountered the sum
- n) (-1
=2 (k) 261

k=2
in the study of radix exchange sorting. On can find numerous others examples in the analysis of
digital structures [4, p. 501], [1, 6] or conflict resolution in broadcast communications [7].
There are two classical approaches to estimate such alternating sums :

— one can arrange the sum to obtain harmonic sums, which can be tackled by Mellin trans-
forms. This is the standpoint of De Bruijn® ;
— Rice proposed a direct approach, which relies on the formula

(2) Df, = Cr /c¢(8)s(s — 1)7'1'!'(5 —n) o

XS

The path C is a contour which encloses the points 0, 1, ..., n, but no singularity of ¢(s).
It is assumed that ¢(s) is an analytic function which extends the sequence f,, and has a
polynomial growth at infinity.

'based on an original of De Bruijn to Knuth ca. 1965 to be found in the middle pages of Knuth’s personal
copy of the book Asymptotic Methods in Analysis
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FIGURE 1. A Rice contour.

Here, we develop the second approach, which we call Rice’s method. Following Prodinger et alii,
we write the so-called Rice kernel as follows,

(=1)"n! _ D(=s)I(n+1)

(3) [n,s] = s(s—1)--(s—n) T(ntl—s)

1. Finite differences

The transformation of sequences (A is the forward difference operator, Af, = f.41 — f;)

D g g = (1A =) (Z)“Ukﬁ

k=1

can be translated into the language of ordinary generating, F(z) = anz”, or into the language

Zn
of exponential generating series f(z) = an—' In the first case, we obtain essentially Euler’s
n!

G(z) = 1 i ZF (1_—22) '

The second case leads to the formula

transformation of series

9(2) = € f(=2),

which shows the involutive character of the transformation. It is also possible to introduce the
Poisson generating series

f) = e 0= 3 fae'

which is a simple variant of the exponential generating series. From this point of view, the trans-
formation becomes very simple,

9(=) = f(==2).

Euler transforms and Poisson transforms occur in the analysis of quadtrees [2] and digital structures.
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2. Integral representation
The next lemma has been known since the 19th century [5, chap. 8].

LEmMMA 1 (RICE’S LEMMA). Let ¢(s) be an analytic function defined in a neighbourhood Q of the
positive real axis [0,+00). Let C be a contour enclosing the integers ng, ..., n, but no singularity

of ¢(s). Then
1 (=1)"n!

(4) Zn: (:) (—1)fo(k) = %in /C qb(s)s(s Y oy Py ds.

k=ng

The proof is a mere application of Cauchy’s residue formula.

The principle of the method is to use hypotheses about the growth of ¢(s) in order to deform
the integration contour and obtain an estimate of the sum. More precisely, the function ¢(s) is of
polynomial order k if

#(s) = O(]s|") as s — 00, s € Q.
With this assumption, the integrand ¢(s)[n, s] tends to 0 when s goes to infinity, if n is large. This
permits to modify the path of integration.

3. Rational case
In this section, we consider the basic case of a rational function.

THEOREM 1. Let ¢(s) be a rational function which is analytic in a neighbourhood of [ng, +o0).
Then, when n is large enough,

. B = — es [o(s (=1)"n s=w
(5) E(_l) (k)éb(k)— Zw:R |:¢( )8(8—1)(8—’11)7 - '

k=ng

The w’s which appear in the sum are the poles of the integrand not in [ng,+00).

The proof relies on Cauchy’s formula used with a contour which is the union of a Rice contour
C and a circle Cg (cf. Fig. 2). When R tends to infinity, the integral over Cg tends to 0 provided
n is greater than the degree of ¢(s).

Let s = 0 + it be a pole of order 7 of ¢(s), which we assume not to be a non-negative integer
for the sake of simplicity. Then,

—1)"n!
(=1)"n ,s=5o| =< nlog" 'n=n"e
(5—1)(8—”) n—00

1

itglognl r—
og n.

Res qb(s)s

It is possible to be more precise and we refer to [3] for details. The authors obtain an asymptotic
equivalent of the type above. Hence Rice’s method epitomises a standard asymptotic behaviour
mixed with some fluctuations. Moreover it must be pointed out that the rightmost poles of ¢(s)
give the most significant part of the asymptotic estimate of D f,,.

EXAMPLE. Let us consider the sum

sim=1 (}) 52

k=1

with m a positive integer. A direct application of the preceding result gives

Su(m) =~ 3 (-1)" (:‘) I®(1)(logn)"~* 40 (bgm ") .

|
m. E—=0 n
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FiGure 2. For R large enough, all poles (tagged by a cross X ) of ¢(s) are inside
the circle Cg but outside the Rice contour C.

ExaMPLE. For the sum

_x () (=DF
L)

k=1
the function involved is ¢(s) = 1/(s2+ 1) and we expect some term n*? to occur. Actually we have

T
T, = cos(logn + 9¢) + o(1).

It is to be noticed that 7, remains bounded whereas the central term of the sum is of order 2" /n?.

4. Meromorphic case
The meromorphic case is a mere extension of the rational case.

ExXAMPLE. The sum

.= (1) (Z) -

k=2
is associated with the meromorphic function
1 21k
P(s) = ST whose poles are the Yy =1+ 10;;

One integrates over the circles Cp with center 1 and radius R = (2k + 1)7/log2. The circles go
between the poles and the function ¢(s) is only of polynomial order on these circles. In this way,
one obtains

n I'(n4+ DI'(=1+ x&)
log2 =t~ ) ;0 U(n+ xx)
kEZ

_nlogzn—l—Cn—l——ZF 2“r1°g2"—|—0(\/ﬁ).
log 2 poors
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There are many others examples for which we refer to [3] in order to keep this summary short.
Let us say simply that Rice’s method provides a correspondence between the singularity of ¢(s)
and the asymptotic behaviour of D f,, as summarised below.

Type of singularity Asymptotic behaviour
Simple pole 1/(s— sq) —I'(=sg)n®
1 r—1
Multiple pole 1/(s—so) —T(=so)n’ ((og%
r—1)!
1 —A-1
Algebraic singularity (s —s0)* —T'(=so)n’ (log n)="7"
I(=2)
R , x (logn)=*"
Logarithmic singularity (s — s9)*(log(s — s0))" | =T'(=s0)n"° TTa (loglogn)”

5. Poisson—Mellin—-Newton cycle

A Rice integral may often be written

O R KL

0T Jesico s(s=1)---(s—n)

For n large, this is approximately
1 —c+ioco .
2ir /_c_ioo P(—s)I'(=s)n’ ds.
Hence an idea that we write informally
Rice ~ Mellin~*.
The argument is only heuristic and the right standpoint is the so-called Poisson—Mellin—-Newton

cycle.
Let us start from a sequence f,. We associate with it the Poisson series

an

—ttn

The Mellin transform of f(t) is

ts+n—1

f(s) an/ooe‘f ——dt
an s—l—n
(s+n-1)

ss 1)--
:F(S)an o n!

Hence we have f*(—s) = I['(—s)v(s), where v(s) is the Newton series

o(s) = Y-y, BT te ot L)
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But we can find the coefficient f, again by the difference operator,
fo = (=1)"A"v(0).

We recognise the expression Dy(n) and by Rice’s lemma we have

fo=— /C[n,s]z/(s) ds.

27
Eventually, Rice’s transform appears to be the inverse of Mellin transform, composed with Poisson
transform.

Ja

Poisson Rice

et Mellin

f(t)zifn ]2*(8):F(S)ifns(s+1)---(s+n—1)

n! n!

Ficure 3. The Poisson—Mellin—-Newton cycle.
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