Descents in Words

Jean-Marc Fédou LaBRI, Université de Bordeaux I

March 28, 1994

[summary by Dominique Gouyou-Beauchamps]

1. Introduction

Let S_n denote the symmetric group on $\{1, 2, ..., n\}$. For a permutation $\sigma \in S_n$, the *rise set*, descent set, inversion set, and their cardinalities are respectively defined by

$$\begin{aligned} \operatorname{Ris} \sigma &= \{i \,:\, 1 \leq i \leq n-1, \sigma(i) < \sigma(i+1)\}, & \operatorname{ris} \sigma &= |\operatorname{Ris} \sigma|, \\ \operatorname{Des} \sigma &= \{i \,:\, 1 \leq i \leq n-1, \sigma(i) > \sigma(i+1)\}, & \operatorname{des} \sigma &= |\operatorname{Des} \sigma|, \\ \operatorname{Inv} \sigma &= \{(k,m) \,:\, 1 \leq k < m \leq n, \sigma(m) < \sigma(k)\}, & \operatorname{inv} \sigma &= |\operatorname{Inv} \sigma|. \end{aligned}$$

The set of common descents of a pair of permutations $(\sigma_1, \sigma_2) \in S_n^2$ is defined as $DD(\sigma_1, \sigma_2) = Des \sigma_1 \cap Des \sigma_2$ and one notes $dd(\sigma_1, \sigma_2) = |DD(\sigma_1, \sigma_2)|$.

Now we recall three definitions of Bessel functions (with $(q)_n = (1-q)(1-q^2)\cdots(1-q^n)$):

$$J_{\nu}(x) = \sum_{n \geq 0} \frac{(-1)^n \left(\frac{1}{2}x\right)^{2n+\nu}}{n!\Gamma(\nu+n+1)}, \qquad \text{(usual)}$$

$$J_{\nu}(x) = \sum_{n \geq 0} \frac{(-1)^n x^{n+\nu}}{n!(n+\nu)!}, \qquad \text{(combinatorial)}$$

$${}^q J_{\nu}(x) = \sum_{n > 0} \frac{(-1)^n q^{\binom{n+\nu}{2}} x^{n+\nu}}{(q)_n (q)_{n+\nu}}, \qquad (q\text{-analog}).$$

Perhaps the first combinatorial context for an element of $\{J_{\nu}\}_{\nu\geq 0}$ was discovered by L. Carlitz, R. Scoville, and T. Vaughan [4].

Theorem 1 ([4, 12]). The generating function of Bessel type for the sequence of polynomials

$$a_n(y,q) = \sum_{(\alpha,\beta) \in S_n^2} q^{\operatorname{inv} \alpha} q^{-\operatorname{inv} \beta} y^{\operatorname{dd}(\alpha,\beta)} \qquad is \qquad \sum_{n \geq 0} q^{\binom{n}{2}} \frac{a_n(y,q)}{(q)_n(q)_n} x^n = \frac{1-y}{{}^q J_0(x(1-y)) - y}.$$

Setting q = 1 and y = 0 in Theorem 1, they deduce that the coefficient $a_n(0,1)$ of $x^n/(n!n!)$ in the series expansion of $1/J_0(x)$ is equal to the number of permutation pairs with no common descents.

First we remark that

(1)
$$\sum_{n\geq 0} q^{\binom{n}{2}} \frac{a_n(y,q)}{(q)_n(q)_n} x^n = \frac{1}{1 + \sum_{\substack{n\geq 1\\25}} (-1)^n (1-y)^{n-1} q^{\binom{n}{2}} x^n / (q)_n^2}.$$

Second we remark that an inversion formula such as (1) involving alternate sums of $(1-y)^{n-1}x^n$ is also present in the well known q-Eulerian polynomials and q-Euler polynomials [2, 3, 16, 17]. More precisely, let $A_n(y,q)$ denote the q-Eulerian polynomials. Then

$$\sum_{n\geq 0} A_n(y,q) \frac{x^n}{(q)_n} = \frac{1}{1 + \sum_{n\geq 1} (-1)^n (1-y)^{n-1} x^n / (q)_n}.$$

A natural problem is to give for generating functions of the type

$$F(x,y) = \frac{1}{1 + \sum_{n>1} (-1)^n \lambda_n (1-y)^{n-1} x^n}$$

a combinatorial interpretation similar to the one described for the generating function F(x,0) of heaps of pieces [18]. There are a number of powerful theories of inversion [13, 14, 17, 19] for dealing with combinatorial objects having generating functions of type F(x,0). Using two such inversion formulas, we present new derivations of R. P. Stanley's generating functions for generalized q-Eulerian and q-Euler polynomials on r-uples of permutations [17]. We further indicate how one of the inversion formulas gives V. Diekert's lifting to the free monoïd of an inversion theorem of P. Cartier and D. Foata [5, 7]. The inversion theorems we use enumerate words in the free monoïd by adjacencies.

2. From the free to the trace monoid

Let X be an alphabet. The empty word will be denoted by 1. The set of all words formed with letters in X by means of the concatenation product is known as the *free monoid* generated by X and is denoted by X^* . In $\mathbb{Z}\langle\langle X\rangle\rangle$, the ring of formal power series of words in X^* with integer coefficients, the following inversion formula holds: $X^* = 1/(1-X)$.

Let θ be an irreflexive symmetric binary relation on X. Define \equiv_{θ} to be the binary relation (induced by θ) on X^* consisting of the set of pairs (w, v) of words such that there is a sequence $w = w_0, w_1, \ldots, w_m = v$ where each w_i is obtained by transposing a pair of letters in w_{i-1} that are consecutive and contained in θ .

Clearly, \equiv_{θ} is an equivalence relation on X^* . The quotient of X^* by \equiv_{θ} gives the partially commutative monoïd (or trace monoïd) induced by θ and denoted by $M(X, \theta)$. The equivalence class \hat{w} of $w \in X^*$ is referred to as the trace of w.

A word $w = x_1 x_2 \cdots x_n \in X^*$ is said to be a basic monomial if $x_i \theta x_j$ for all $i \neq j$. Note that all the letters of a basic monomial are distinct. A trace \hat{w} is said to be θ -trivial if any one of its representatives is a basic monomial. Letting $\mathcal{T}^+(X, \theta)$ be the set of θ -trivial traces, the inversion formula of Möbius type reads as follows.

Theorem 2 (P. Cartier and D. Foata). For θ an irreflexive symmetric binary relation on X, the traces in $M(X, \theta)$ are generated by

$$\sum_{\hat{w} \in M(X,\theta)} \hat{w} = \frac{1}{1 + \sum_{\hat{t} \in \mathcal{T} + (X,\theta)} (-1)^{l(\hat{t})} \hat{t}},$$

where $l(\hat{t})$ denotes the length of any representative of \hat{t} .

In terms of heaps of pieces, the Cartier-Foata's theorem is nothing but the inversion lemma for heap monoïd [18, prop. 5.1].

A natural question to ask is whether \hat{w} and \hat{t} can be replaced by some canonical representatives so that Theorem 2 remains true as a formula in the free monoid X^* . As resolved by V. Diekert [6, 7], such canonical representatives exist if and only if θ admits a transitive orientation.

To be precise, a subset $\vec{\theta}$ of θ is an orientation of θ if θ is a disjoint union of $\vec{\theta}$ and $\{(x,y): (y,x) \in \vec{\theta}\}$. The set of $t = t_1t_2 \cdots t_n \in X^*$ satisfying $t_1\vec{\theta}t_2\vec{\theta}\cdots\vec{\theta}t_n$ is denoted by $T^+(X,\vec{\theta})$. Note that $T^+(X,\vec{\theta})$ is a set of representatives for the θ -trivial traces $T^+(X,\theta)$ whenever $\vec{\theta}$ is transitive. A word $w = x_1x_2 \cdots x_n \in X^*$ is said to have a $\vec{\theta}$ -adjacency in position k if $x_k\vec{\theta}x_{k+1}$. We denote the number of $\vec{\theta}$ -adjacencies of w by $\vec{\theta}$ adj w. Although V. Diekert did not explicitly introduce the notion of a $\vec{\theta}$ -adjacency, his lifting theorem may be paraphrased as follows.

Theorem 3 (V. Diekert). Let θ be an irreflexive symmetric binary relation on X and $\vec{\theta}$ be an orientation of θ . Then, $\vec{\theta}$ is transitive if and only if there exists a complete set W of representatives for the traces of $M(X, \theta)$ such that

$$\sum_{w \in W} w = \frac{1}{1 + \sum_{t \in T^+(X, \vec{t})} (-1)^{l(t)} t}.$$

Moreover, $W = \{ w \in X^* : \vec{\theta} \operatorname{adj} w = 0 \}.$

3. Descents in a word

Now X is a totally ordered alphabet. We say that a word $w = x_1 \cdots x_i x_{i+1} \cdots x_n$ of X^* has a θ -descent in position i when $x_i \theta x_{i+1}$ and $x_i > x_{i+1}$. We note $x \gg_{\theta} y$ (resp. $x \ll_{\theta} y$) when $x \theta y$ and x > y (resp. x < y). Let $I^+ = \{x_1 \cdots x_n \in X^*, n > 0, x_1 \gg_{\theta} x_2 \gg_{\theta} \cdots \gg_{\theta} x_{n-1} \gg_{\theta} x_n\}$. Let $w \in X^*$, we denote by $\theta \operatorname{des}(w)$ the number of its θ -descents.

Theorem 4 ([9]). The following equality holds in the free monoid

(2)
$$\sum_{w \in X^*} y^{\theta \operatorname{des}(w)} w = \frac{1}{1 - \sum_{t \in I^+} (y - 1)^{|t| - 1} t}.$$

When \gg_{θ} is transitive, setting y = 0 in (2) gives the lifting of Theorem 2 to the free monoid as stated in Diekert's Theorem 3. We close this section with two examples.

EXAMPLE (TRANSITIVE CASE). Let $X = \{a, b, c\}$, a < b < c with $\theta = \{(a, b), (b, a), (a, c), (c, a)\}$. The θ -descents of a word correspond to factors ba and ca. Then \gg_{θ} is a transitive relation. Note that $I^+ = \{a, b, c, ba, ca\}$ is a complete set of the representatives for the θ -trivial traces $\mathcal{T}^+(X, \theta)$. From (2), we have

$$\sum_{w \in X^*} y^{\theta \deg(w)} w = \frac{1}{1 - (a+b+c) + (1-y)(ba+ca)}.$$

Setting y = 0 gives an identity that can be viewed as having been lifted from the trace monoïd as in Theorem 3.

EXAMPLE (Non-transitive case). With the same alphabet, let $\theta = \{(a,b), (b,a), (b,c), (c,b)\}$. The θ -descents of a word correspond to factors ba and cb. Then \gg_{θ} is not a transitive relation. Observe that the word cba in $I^+ = \{a, b, c, ba, cb, cba\}$ is not a θ -trivial trace. Also, the class of cba is $\{cba, cab, bca\}$ and contains two words having no θ -descents (or no \gg_{θ} -adjacencies). Nevertheless, (2) implies

$$\sum_{w \in X^*} y^{\theta \operatorname{des}(w)} w = \frac{1}{1 - (a+b+c) + (1-y)(ba+cb) - (1-y)^2 cba}.$$

4. Adjacencies in words

Let X be an alphabet. From X, we construct the adjacency alphabet $A = \{a_{xy} : (x,y) \in X \times X\}$. The adjacency monomial and the sieve polynomial for $w = x_1x_2 \cdots x_n \in X^*$ of length $n \geq 2$ are defined respectively as $a(w) = a_{x_1x_2}a_{x_2x_3}\cdots a_{x_{n-1}x_n}$ and $\overline{a}(w) = (a_{x_1x_2}-1)(a_{x_2x_3}-1)\cdots(a_{x_{n-1}x_n}-1)$. For $0 \leq n \leq 1$, we set $a(w) = \overline{a}(w) = 1$. In $\mathbb{Z}[A]\langle\langle X \rangle\rangle$, the algebra of formal power series of words in X^* with polynomial coefficients, the following inversion formula holds:

Theorem 5 ([10, 14, 17, 19]). According to the adjacencies, the words in X^* are generated by

(3)
$$\sum_{w \in X^*} a(w)w = \frac{1}{1 - \sum_{w \in X^+} \overline{a}(w)w}.$$

If for $u, v \in X$ we set $a_{uv} = y$ when $x \gg_{\theta} y$ and $a_{uv} = 1$ otherwise, Theorem 2 can be seen as a corollary of Theorem 5. In passing, we mention that J. Hutchinson and H. Wilf [15] have given a closed formula for counting words by adjacencies.

EXAMPLE. The applications we give rely on the fact that setting $a_{xy} = 1$ eliminates all words containing xy as a factor from the right-hand side of (3). Suppose that $X = \{a, b, c\}$. Setting $a_{aa} = r$, $a_{ab} = s$, $a_{ac} = t$ and the remaining $a_{ij} = 1$ in Theorem 5 yields

$$\sum_{w \in X^*} a(w)w = \frac{1}{1 - \sum_{w \in B} \overline{a}(w)w},$$

where $B = \{a^n \mid n \ge 1\} \cup \{a^n b \mid n \ge 0\} \cup \{a^n c \mid n \ge 0\}$. Thus

$$\sum_{w \in X^*} a(w)w$$

$$= \left[1 - \sum_{n \ge 1} (r-1)^{n-1} a^n - b - \sum_{n \ge 1} (r-1)^{n-1} (s-1) a^n b - c - \sum_{n \ge 1} (r-1)^{n-1} (t-1) a^n c\right]^{-1}$$

$$= \frac{1 + a - ra}{1 - ra - b - c + (r-s)ab + (r-t)ac}.$$

5. The insertion-shift bijection

In applying Theorem 5 to the enumeration of permutations, we make repeated use of the insertion-shift bijection [8] that associates a finite sequence of non-negative integers to a pair (σ, λ) where σ is a permutation and λ is a partition.

Let \mathbb{N}_+^n be the set of words of length n in $\mathbb{N}_+ = \mathbb{N} \setminus \{0\}$. The rise set, rise number, inversion number, and norm of $w = i_1 i_2 \cdots i_n \in \mathbb{N}_+^n$ are respectively defined by

Ris
$$w = \{k : 1 \le k \le n - 1, i_k < i_{k+1}\},$$
 ris $w = |\operatorname{Ris} w|,$ inv $w = |\{(k, m) : 1 \le k < m \le n, i_k > i_m\}|,$ $||w|| = i_1 + i_2 \cdots + i_n.$

The set of non-decreasing words in \mathbb{N}^n_+ (i.e., partitions with at most n parts) will be denoted by P_n . We have to construct inductively a bijection $f_n: \mathbb{N}^n_+ \to S_n \times P_n$. If n=1, then the map $i \mapsto (1,i)$ does the job. Suppose f_{n-1} exists and let $w=i_1i_2\cdots i_n\in \mathbb{N}^n_+$. Applying f_{n-1} to the first n-1 letters of w gives a pair (α,δ) in $S_{n-1}\times P_{n-1}$. Note $\delta_0=0$, $\delta_n=\infty$ and $\delta=(\delta_1\cdots\delta_{n-1})$. Determining k such that $\delta_{k-1}\leq i_n<\delta_k$, we define $f_n(w)$ to be the pair

$$(\alpha(1)\cdots\alpha(k-1) n \alpha(k)\cdots\alpha(n-1), \delta_1\cdots\delta_{k-1} i_n (\delta_k-1)\cdots(\delta_{n-1}-1)).$$

LEMMA 1 ([8]). For $n \geq 1$ and for $w \in \mathbb{N}^n_+$, if w is mapped to the pair (σ, λ) by the bijection $f_n : \mathbb{N}^n_+ \to S_n \times P_n$, then $\operatorname{Ris} w = \operatorname{Ris} \sigma^{-1}$ and $||w|| = \operatorname{inv} \sigma + ||\lambda||$.

EXAMPLE. The word $w = 372314 \in \mathbb{N}_{+}^{6}$ is mapped by f_{6} to the pair $(\sigma, \lambda) = (531426, 111244) \in S_{6} \times P_{6}$. Noting that $\sigma^{-1} = 352416$, we see that Ris $w = \{1, 3, 5\} = \text{Ris } \sigma^{-1}$ and that $||w|| = 20 = \text{inv } \sigma + ||\lambda|| = 7 + 13$.

6. q-Eulerian polynomials and bibasic Bessel functions

As the first application of Theorem 1, we derive a generating function for the sequence

$$A_n(t,q) = \sum_{\sigma \in S_n} t^{\operatorname{ris} \sigma} q^{\operatorname{inv} \sigma}.$$

The polynomial $A_n(t,1)$ is the n-th Eulerian polynomial.

We set $a_{ij} = t$ if $i \leq j$ and $a_{ij} = 1$ otherwise. Theorem 1 reduces to

(4)
$$\sum_{w \in \mathbb{N}_{+}^{*}} t^{\operatorname{ris} w} w = \frac{1}{1 - \sum_{n \geq 1} (t - 1)^{n - 1} \sum_{i_{1} \leq i_{2} \leq \dots \leq i_{n}} i_{1} i_{2} \dots i_{n}}.$$

Using (4) and lemma 1, we have the following form for the generating function:

(5)
$$\sum_{n>0} \frac{A_n(t,q)z^n}{(q)_n} = \frac{1}{1 - \sum_{n>1} (t-1)^{n-1} z^n / (q)_n} = \frac{1-t}{E\left(-z(1-t),q\right) - t},$$

where $E(z,q) = \sum_{n\geq 0} z^n/(q)_n$ is a well-known q-analog of e^z .

Now we derive a generating function for the sequence

$$B_n(t,q_1,q_2) = \sum_{(\sigma_1,\sigma_2) \in S_n^2} t^{\mathrm{dd}(\sigma_1,\sigma_2)} q_1^{\mathrm{inv} \ \sigma_1} q_2^{\mathrm{inv} \ \sigma_2}.$$

We use the alphabet $X' = \{\binom{a}{a'}, (a, a') \in \mathbb{N}_+^2\}$ and for letters $\mathbf{i} = (i_1, i_2)$ and $\mathbf{j} = (j_1, j_2)$, we set $a_{\mathbf{i}\mathbf{j}} = t$ if $i_1 \leq i_2$ and $j_1 \leq j_2$, and $a_{\mathbf{i}\mathbf{j}} = 1$ otherwise. Repeating (5) with appropriate modifications gives

$$\sum_{n>0} \frac{B_n(t,q_1,q_2)z^n}{(q_1)_n(q_2)_n} = \frac{1}{1 - \sum_{n\geq 1} (t-1)^{n-1} \frac{z^n}{(q_1)_n(q_2)_n}} = \frac{1-t}{J\left(-z(1-t),q_1,q_2\right)-t},$$

where $J(z,q) = \sum_{n\geq 0} (-1)^n z^n/(q_1)_n (q_2)_n$ is a bibasic Bessel function.

7. q-Euler polynomials

D. André [1] showed that if E_n denotes the number of up-down alternating permutations in S_n (that is, $\sigma \in S_n$ that $\sigma(1) < \sigma(2) > \sigma(3) < \sigma(4) > \cdots$), then

$$\sum_{n>0} E_n \frac{z^n}{n!} = \frac{1+\sin z}{\cos z}.$$

The number E_n is known as the *n*-th Euler number.

We now apply Theorem 5 to the more general problem of counting the set of odd-up permutations $\mathcal{O}_n = \{\sigma \in S_n : \sigma(1) < \sigma(2), \sigma(3) < \sigma(4) \cdots \}$ by inversion number and by the number of even indexed rises ris₂ $\sigma = |\{k \in \text{Ris } \sigma : k \text{ is even}\}|$. We begin by determining a generating function for

$$C_{2n}(t,q) = \sum_{\sigma \in \mathcal{O}_{2n}} t^{\operatorname{ris}_2 \sigma} q^{\operatorname{inv} \sigma}.$$

Note that $C_{2n}(0,1) = E_{2n}$.

Let $X = \{\mathbf{i} = (i_1, i_2) : i_1, i_2 \in \mathbb{N}_+ \text{ with } i_1 \leq i_2\}$. For letters $\mathbf{i} = (i_1, i_2)$ and $\mathbf{j} = (j_1, j_2)$, we set $a_{\mathbf{i}\mathbf{j}} = t$ if $i_2 \leq j_1$ and $a_{\mathbf{i}\mathbf{j}} = 1$ otherwise. Then we have

$$\sum_{n\geq 0} C_{2n}(t,q) \frac{z^{2n}}{(q)_{2n}} = \frac{1}{1 - \sum_{n\geq 1} (t-1)^{n-1} \frac{z^{2n}}{(q)_{2n}}}.$$

Bibliography

- [1] André (D.). Sur les permutations alternées. Journal de Mathématiques Pures et Appliquées, vol. 7, 1881, pp. 167-184.
- [2] Carlitz (L.). Eulerian numbers and polynomials. Math. Magazine, vol. 33, 1959, pp. 247-260.
- [3] Carlitz (L.). A combinatorial property of q-Eulerian numbers. American Mathematical Monthly, vol. 82, 1975, pp. 51-54.
- [4] Carlitz (L.), Scoville (R.), and Vaughan (T.). Enumeration of pairs of permutations. Discrete Mathematics, vol. 14, 1976, pp. 215–239.
- [5] Cartier (P.) and Foata (D.). Problèmes combinatoires de commutation et réarrangements. Springer-Verlag, Berlin, 1969, Lecture Notes in Mathematics, vol. 85.
- [6] Diekert (V.). Transitive orientations, Möbius functions and complete semi-Thue systems for partially commutative monoïds. In Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 317, pp. 176-187. 1988.
- [7] Diekert (V.). Combinatorics on Traces. Springer-Verlag, 1990, Lecture Notes in Computer Science, vol. 454.
- [8] Fédou (Jean-Marc). Fonctions de Bessel, empilements et tresses. In Leroux (P.) and Reutenauer (C.) (editors), Séries Formelles et Combinatoire Algébrique, Publications du LaCIM, vol. 11, pp. 189-202. Université du Québec à Montréal, Montréal, 1992.
- [9] Fédou (Jean-Marc). Combinatorial objects counted by q-Bessel functions. Reports of Mathematical Physics, vol. 34, n° 1, 1994.
- [10] Fédou (Jean-Marc) and Rawlings (Don). Adjacencies in words. Advances in Applied Mathematics, 1994. To appear.
- [11] Fédou (Jean-Marc) and Rawlings (Don). Statistics on finite sequences of permutations. *Electronic Journal of Combinatorics*, 1994. To appear.
- [12] Fédou (Jean-Marc) and Rawlings (Don). Statistics on pairs of permutations. *Discrete Mathematics*, 1994. To appear.
- [13] Gessel (I. M.). Generating Functions and Enumeration of Sequences. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1977.
- [14] Goulden (Ian P.) and Jackson (David M.). Combinatorial Enumeration. John Wiley, New York, 1983.
- [15] Hutchinson (J. P.) and Wilf (H. S.). On Eulerian circuits and words with prescribed adjacency patterns. *Journal of Combinatorial Theory, Series A*, vol. 18, 1975, pp. 80-87.
- [16] Riordan (J.). An introduction to combinatorial theory. John Wiley, New York, 1958.
- [17] Stanley (R. P.). Binomial posets, Möbius inversions, and permutation enumeration. *Journal of Combinatorial Theory*, Series A, vol. 20, 1976, pp. 336-356.
- [18] Viennot (X. G.). Heaps of pieces I: Basic definitions and combinatorial lemmas. In Combinatoire énumérative. Lecture Notes in Mathematics, pp. 321-350. Springer-Verlag, 1986.
- [19] Zeilberger (D.). Enumeration of words by their number of mistakes. *Discrete Mathematics*, vol. 34, 1981, pp. 89-92.