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1. Introduction

Let 5, denote the symmetric group on {1,2,...,n}. For a permutation o € S5,, the rise set,
descent set, inversion set, and their cardinalities are respectively defined by

Risoc={i:1<i<n-1,0(i)<o(t+ 1)}, risc = | Ris o],
Deso={i: 1<i<n-1,0(i)>0c(i+ 1)}, deso = | Deso],
Inve ={(k,m) : 1<k <m<n,o(m)<o(k)}, inve=|Invol.

The set of common descents of a pair of permutations (oy,0,) € S? is defined as DD(oy,0,) =
Deso; N Deso, and one notes dd(oy,02) = | DD(04, 05)|.
Now we recall three definitions of Bessel functions (with (¢), = (1 —¢)(1 —¢*)---(1 —¢")):

J,(z) = Z (1()# (usual)

n!l'(v+n+1)’
(=)t o
J,(z) = Z 7 (combinatorial)
n>0 (n + V)'
n+tv
(_1)nq( 2 )$n+1/
o,(z) = , g-analog).

Perhaps the first combinatorial context for an element of {J,},>o was discovered by L. Carlitz,
R. Scoville, and T. Vaughan [4].

THEOREM 1 ([4, 12]). The generating function of Bessel type for the sequence of polynomials

inv o~ i : ») @n(Y: ) 1—y
an(y7 q) — qll’lV aq inv ﬁydd(a,ﬁ) is q(2) P .
(aﬁz);b“ﬁ nzz:o (@Dnl@)n “o(z(1-y)) -y

Setting ¢ = 1 and y = 0 in Theorem 1, they deduce that the coefficient @,(0,1) of z"/(n!n!)
in the series expansion of 1/Jy(z) is equal to the number of permutation pairs with no common
descents.

First we remark that
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1 = .
(1) g > D’ T T (11— g e /()2
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Second we remark that an inversion formula such as (1) involving alternate sums of (1 —y)*~!a"

is also present in the well known g¢-FEulerian polynomials and g¢-Euler polynomials [2, 3, 16, 17].
More precisely, let A, (y,q) denote the ¢g-Eulerian polynomials. Then

> Au(y,q) T . - :
=6 (@ 142 (=D)L = y) e /(g)n
A natural problem is to give for generating functions of the type

1
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a combinatorial interpretation similar to the one described for the generating function F(z,0) of
heaps of pieces [18]. There are a number of powerful theories of inversion [13, 14, 17, 19] for dealing
with combinatorial objects having generating functions of type F(z,0). Using two such inversion
formulas, we present new derivations of R. P. Stanley’s generating functions for generalized ¢-
Eulerian and ¢-Euler polynomials on r-uples of permutations [17]. We further indicate how one
of the inversion formulas gives V. Diekert’s lifting to the free monoid of an inversion theorem of
P. Cartier and D. Foata [5, 7]. The inversion theorems we use enumerate words in the free monoid
by adjacencies.

2. From the free to the trace monoid

Let X be an alphabet. The empty word will be denoted by 1. The set of all words formed with
letters in X by means of the concatenation product is known as the free monoid generated by X
and is denoted by X*. In Z((X)), the ring of formal power series of words in X* with integer
coefficients, the following inversion formula holds: X* =1/(1 — X).

Let 6 be an irreflexive symmetric binary relation on X. Define =, to be the binary relation
(induced by #) on X* consisting of the set of pairs (w,v) of words such that there is a sequence
w = wq, Wi, ..., w, = v where each w; is obtained by transposing a pair of letters in w;_; that are
consecutive and contained in 6.

Clearly, =4 is an equivalence relation on X*. The quotient of X* by =4 gives the partially
commutative monoid (or trace monoid) induced by # and denoted by M(X,#). The equivalence
class w of w € X* is referred to as the trace of w.

A word w = zy2y- -2, € X* is said to be a basic monomial if z,0x; for all i # j. Note that
all the letters of a basic monomial are distinct. A trace w is said to be #-trivial if any one of its
representatives is a basic monomial. Letting 7+(X,#) be the set of #-trivial traces, the inversion
formula of Mo6bius type reads as follows.

THEOREM 2 (P. CARTIER AND D. FoaTA). For 6 an irreflexive symmetric binary relation on
X, the traces in M(X,0) are generated by

> - 1

GEM(X,0) 1+ EfeT‘F(Xyg)(_l)l({)tA’

where (1) denotes the length of any representative of i.

In terms of heaps of pieces, the Cartier-Foata’s theorem is nothing but the inversion lemma for
heap monoid [18, prop. 5.1].

A natural question to ask is whether @ and { can be replaced by some canonical representatives
so that Theorem 2 remains true as a formula in the free monoid X*. As resolved by V. Diekert [6, 7],
such canonical representatives exist if and only if 8 admits a transitive orientation.
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To be prec1se a subset 6 of @ is an orientation of 6 if 8 is a d1SJ01nt union of § and {(a: y) -
(y,z) € ). The set of t = 111y ---1, € X* satisfying 1,01,0 - - - 61, is denoted by T+(X 6). Note
that 7+(X,6) is a set of representatives for the #-trivial traces 7+(X,#) whenever 6 is transitive.
A word w = 212492, € X* is said to have a g—adjacency in position k if xk§$k+1. We denote
the number of t‘f—adjacencies of w by t‘fadj w. Although V. Diekert did not explicitly introduce the
notion of a @-adjacency, his lifting theorem may be paraphrased as follows.

THEOREM 3 (V. DIEKERT). Let 8 be an irreflexive symmetric binary relation on X and g be an

orientation of 8. Then, § is transitive if and only if there exists a complete set W of representatives
for the traces of M(X,8) such that

1
E w = .
weW L+ EteT+(X,€‘)(_1)l(t)t

Moreover, W = {w € X* : fadjw = 0}.

3. Descents in a word

Now X is a totally ordered alphabet. We say that a word w = 2y ---2;2;41 -2, of X* has a
f-descent in position ¢ when z;0x;,; and z; > z;41. We note & >4 y (resp. = <4 y) when 26y
and z > y (resp. @ < y). Let IT ={a, -2, € X*,n > 0,21 >4 &g g -+ g Tug ¢ Tn}. Let
w € X*, we denote by des(w) the number of its #-descents.

THEOREM 4 ([9]). The following equality holds in the free monoid

1
9 6 des(w) _
(2) 2, e =

weX* Ete[+(y_ 1)|t|_1t‘

When >, is transitive, setting y = 0 in (2) gives the lifting of Theorem 2 to the free monoid as
stated in Diekert’s Theorem 3. We close this section with two examples.

ExaMPLE (TRANSITIVE CASE). Let X = {a,b,c},a < b < cwith 8 = {(a,b),(b,a),(a,c),(c,a)}.
The #-descents of a word correspond to factors ba and ca. Then >4 is a transitive relation. Note
that It = {a,b, ¢, ba, ca} is a complete set of the representatives for the #-trivial traces 7+(X,#8).
From (2), we have

1

f des(w) _
Zy v= l—(a+b+c)+(1—y)(ba+ ca)

weX*

Setting y = 0 gives an identity that can be viewed as having been lifted from the trace monoid
as in Theorem 3.

EXAMPLE (NON-TRANSITIVE CASE). With the same alphabet, let § = {(«a,b), (b,a), (b,c),(c,b)}.
The 6-descents of a word correspond to factors ba and ¢b. Then >4 is not a transitive relation.
Observe that the word cba in It = {a,b, c,ba, cb, cha} is not a f-trivial trace. Also, the class of cba is
{cba, cab, bca} and contains two words having no #-descents (or no >-adjacencies). Nevertheless,
(2) implies

E yé’des(w)w _ 1 .
i l1—=(a+b+c)+ (1 —y)(ba+cb)—(1—y)*cba
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4. Adjacencies in words

Let X be an alphabet. From X, we construct the adjacency alphabet A = {a,, : (z,y) € X xX}.
The adjacency monomial and the sieve polynomial for w = zyx4---2, € X* of length n > 2 are
defined respectively as a(w) = @y, 0ypyey = o,y _yee, ANA WW) = (@p,0,—1)(Cppes—1) -+ (g0, —1).
For 0 <n <1, we set a(w) = @(w) = 1. In Z[A]((X)), the algebra of formal power series of words
in X* with polynomial coefficients, the following inversion formula holds:

THEOREM 5 ([10, 14, 17, 19]). According to the adjacencies, the words in X* are generated by
1
(3) a(w)w = — .
S T

If for u,v € X we set a,, = y when = >4 y and a,, = 1 otherwise, Theorem 2 can be seen as a
corollary of Theorem 5. In passing, we mention that J. Hutchinson and H. Wilf [15] have given a
closed formula for counting words by adjacencies.

ExaMPLE. The applications we give rely on the fact that setting a,, = 1 eliminates all words
containing zy as a factor from the right-hand side of (3). Suppose that X = {a,b,c}. Setting
Ugq =T, Qgp = S, Gq, = 1 and the remaining a;; = 1 in Theorem 5 yields

1
a(w)w =
D B S

weX*
where B ={a" |n > 1}U{a"b|n >0}U{a"c|n > 0}. Thus

E a(w)w

weX*

=|1- Z(r 1) ta* —b - Z(r - 1) s—1)a"b—c— Z(r - 1" Yt - 1)a"c

n>1 n>1 n>1
14+a—ra
l—ra—b—c+(r—s)ab+ (r —t)ac

5. The insertion-shift bijection

In applying Theorem 5 to the enumeration of permutations, we make repeated use of the
insertion-shift bijection [8] that associates a finite sequence of non-negative integers to a pair (o, \)
where ¢ is a permutation and A is a partition.

Let N7 be the set of words of length n in Ny = N\ {0}. The rise set, rise number, inversion
number, and norm of w = 414y -+ -1, € N} are respectively defined by

Risw={k:1<k<n-—1,i <izg1}, risw = | Ris w|,
invw=[{(k,m) : 1 <k<m<n, i >in}, |w|| =41+ ia -+ .

The set of non-decreasing words in N7} (i.e., partitions with at most n parts) will be denoted by
P,. We have to construct inductively a bijection f, : N} — 5, x P,. If n = 1, then the map
i+ (1,7) does the job. Suppose f,_; exists and let w = #1145 -- -4, € N}. Applying f,_; to the first
n — 1 letters of w gives a pair (a,d) in S,_1 x P,_;. Note §p =0, ¢, = oo and § = (61 ---6,_1).
Determining k such that é6,_; <4, < é;, we define f,(w) to be the pair

(a(1)-+-alk = 1)na(k)---a(n—1),8 6y in (= 1)+ ++(60_1 — 1)).
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LemMa 1 ([8]). For n > 1 and for w € N7}, if w is mapped to the pair (o,)) by the bijection
Jo : N} — 5, X P,, then Risw = Riso™" and ||w|| = invo + ||A[].

ExamMPLE. The word w = 372314 € NY is mapped by fs to the pair (o, A) = (531426,111244) €
Se X Ps. Noting that o=! = 352416, we see that Risw = {1,3,5} = Riso~" and that ||w|| = 20 =
inve 4 [|A] = 74 13.

6. g-Eulerian polynomials and bibasic Bessel functions

As the first application of Theorem 1, we derive a generating function for the sequence
An(t, q) — Z tris oqinv 7
oES,
The polynomial A,(t,1) is the n-th Fulerian polynomial.
We set a;; =t if : < j and a;; = 1 otherwise. Theorem 1 reduces to
(4) E trisw 1
w = . .
1- EnZl(t — 1)t Eilgizgmgin ity

wEN;

Using (4) and lemma 1, we have the following form for the generating function:

5 (@ 1= =1D /(@) E(=2(1-1),q) =t

where E(z,¢) =3 ,502"/(¢). is a well-known g¢-analog of e*.
Now we derive a generating function for the sequence

Bn(t7 g1, q2) — Z tdd(al,az)qilnv olqi2nv o2
(01,02)€S52

We use the alphabet X' = {({),(a,a’) € N3} and for letters i = (i1,i3) and j = (j1,72), we set
ai; = L if 1y <15 and j; < jo, and a;; = 1 otherwise. Repeating (5) with appropriate modifications
gives

(5) E An(t,q)z" 1 1-1

5 (@al®)n 1= T - D)5ty J (=20 -1),01,02) =1
where J(z,q) = 3=,50(=1)"2"/(¢1)n(q2)n is a bibasic Bessel function.

Z Bn(t7q17q2)2n _ 1 1—1

7. ¢g-Euler polynomials

D. André [1] showed that if £, denotes the number of up-down alternating permutations in S,
(that is, 0 € S, that (1) < 0(2) > 0(3) < 0(4) > --+), then

ZEniz 1—|—sinz‘
n!

n>0 COSs Z

The number FE, is known as the n-th Fuler number.

We now apply Theorem 5 to the more general problem of counting the set of odd-up permutations
0,={0¢€85, :0()<a(2),0(3) < oc(4)---} by inversion number and by the number of even
indexed rises risy 0 = |{k € Riso : k is even}|. We begin by determining a generating function for

Czn(t,(]) — Z tri52 qunvo.

0€02,

Note that C5,(0,1) = Es,.
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Let X = {i = (¢1,%2) ® 71,72 € Ny with 4, <4}, For letters 1 = (41,42) and j = (J1,j2), we set
a;; = t if 75 < j; and a;3 = 1 otherwise. Then we have

[7]
[8]

[9]

22 1

E CQn(t7 Q) = L 2n  °*
n>0 (Don 1= st = )P
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