Transformation of Parallel Programs Guided by Micro-Analysis

Aline Weitzman

Brandeis University
October 5, 1992

[summary by Paul Zimmermann]

Abstract

In this talk A. Weitzman provides a summary of the past work done at Brandeis in micro-
analysis, and outlines some new research directions which are the subject of her dissertation.
The overall goal is to develop program manipulation and analysis tools which help a user in
transforming parallel programs so as to render them more efficient for execution in a variety
of parallel machines. One of the original contributions of this work is in the usage of symbolic
processing and constraint logic programming to analyse and manipulate parallel programs
for parallel computers. In the talk A. Weitzman provides: 1. a description of micro-analysis
applicable to sequential programs, 2. micro-analysis approach for SIMD programs, 3. micro-
analysis approach for MIMD programs, 4. automatic transformation scheme for translating
SIMD programs to MIMD programs, guided by micro-analysis.

1. Introduction

Two different approaches are possible in order to establish the performance of a computer program: either
make some benchmarks, that is measure the time used by the program on some input data, or try to derive
some general formula (time-formule) that express the execution time of the program in terms of the time to
perform basic (elementary) instructions, such as an addition of two registers, or a comparison between two
variables. The second approach, which is called micro-analysis, has two main advantages. First it does not
depend on a specific machine, because the time-formula are valid for any machine; only times to perform
each basic instruction have to be determined for a given computer, but only once for each machine. Secondly
the time-formulz can be derived automatically, without running the program. The micro-analysis approach
enables us to estimate the performance of programs on machines yet to be built, or to evaluate the effect of
program changes.

Thus, the aim of micro-analysis is to derive from a program a time-formula, which is a symbolic formula
for the execution time of the program. The symbolic variables of the time-formula are the time-variables,
which represent the time to perform common elementary operations (addition, assignment, subscripting,
loop overhead, ... ). For example, the statement

ali,k] := b*(c+d+e)
has the time-formula ¢;u352 + tassign + tmuir + 28aqq, and the loop

for i := 1 to n do
ali,k] := b*(c+d+e)

has the time-formula n(tforoh + tsubs2 + tassign + tmuit + 2tadd)-

2. Analysis of sequential programs

The heart of micro-analysis is the time-formula generator. It takes as input the program to be analyzed,
and interactively asks the user to provide

155



1V Analysis of Algorithms and Data Structures

— the probabilities with which branches of conditionals (if then else) are executed. These probabilities
can be fixed (numeric or symbolic values) or can be specified as functions of given parameters;
— the number of times while-loops are performed. This number may also be symbolic or a function
of given parameters.
For example, with the following program as input,
z=0; j=1;
while (j<=n) {
if (x[jl==1) z=z+y;
J=i+1; y=2%*y;
}
the time-formula generator asks for the probability that x[j1==1 becomes true and the number of times
the while loop is executed, the user answer respectively p and n. Then the system outputs the following
time-formula, with the help of MAPLE:

Formula = n(twhileoh + tlesseq + tmult + (P + Q)tassign + (P + 1)tadd + tcond + tsubsl + tequal) + 2tassign~

Determining loop invariants. In some cases, the number of times loops are performed can be determined
automatically. This is done by the finite-difference equations generator. The idea is to produce a set of
finite-difference equations for the variables that are of interest in a given loop. Then, using the termination
condition of the loop together with initial conditions provided by the program or the user, one uses a symbolic
algebra system like MAPLE to solve the difference equations. Consider for example the loop

i=a; j=b;

while (i+j<n) {

j=2%i; i=i+c;
¥
The finite-difference equations generator outputs the solution
i(zz) = a +c * zz, j(zz) =2 % a+ 2 % c *xzz -2 % C
where zz is the number of times the loop has been executed (0 at the beginning). This result gives the
number of iterations of the loop:
N [n—3a—|—26-‘ .

3¢

Determining values of time-variables. Once the time-formula of a given program has been derived, to obtain
an estimation of the time complexity for a particular machine, one has to determine the numeric values of
the time-variables (tq4d, tmuit, - - . ) corresponding to this machine. For this aim, the first method that comes
to mind is to execute N times an elementary instruction op, for example in a for loop, to measure the time
used 7', and to use the approximation

top ~ 7
A more accurate method has been proposed by T. Hickey. The idea is to use a set of benchmark programs
Py, ..., Py. One first runs all programs on the machine with counters for each elementary instruction. One
thus obtains a set of vectors c¢i,...,¢n. Each vector ¢; contains the values of the elementary instruction
counters for the benchmark P;. One runs once more every benchmark, but this time without the counters,
and one measures the time ¢; of the program F;. Then one sets the following system of equations
(tforohatadd:tmulta~~~)'Cj:tj(l'i'ej)a ISJSm;

and one approximates the time-variables by the numeric values that minimize the sum
m
> lel-
1

156



Transformation of Parallel Programs Guided by Micro-Analysis

With this method, the author was able to determine the values of twenty different time-variables for two
different machines (HP 9000 and Sun 3), with an error of at most 4%.

3. Analysis of parallel programs for SIMD machines

A SIMD (Single Instruction Multiple Data) machine is a parallel architecture where each processor has
its own memory. The same program is executed synchronously on each processor, thus there is an instance
of each variable of the program in every processor (they are called parallel variables). The processors
communicate to each other with send or get instructions. In what concerns micro-analysis, the situation is
very similar to sequential programs, except one has to consider the cost of communication instructions.

On the Connection Machine (CM-2) for example, there are two kinds of communications:

— grid communication: every processor, say number j, sends a value to a processor at a fixed distance
d, thus to processor j+d. Experiments made by the author show that the cost of grid communication
depends on the decomposition of the distance d into a sum (or difference) of powers of two. For
example, Tyriq(42) = Tiria(32) 4+ Tigrid (8) + Tigrid(2), and Tigria(60) = Tigria (64) + Tigria(4). The lowest
time is about 500us on the CM-2;

— general communication: any processor j is allowed to send any value to a processor at any distance
d;. The cost of general communication is constant by hardware considerations: it is about 1500us

on the CM-2.

Thus the micro-analysis of SIMD programs is essentially the same as for sequential programs, except one
has to introduce some new time-variables like #;.,4, tscan tO scan processors where a parallel variable has a
given value, tpc00rq t0 get the processor number, ¢,,4,_reaq to read a parallel variable.

4. Analysis of parallel programs for MIMD machines

A MIMD (Multiple Instruction Multiple Data) machine is a parallel architecture where each processor
executes its own set of instructions. An example is the Butterfly computer, where the main program,
executed on one processor, can start some new processes on other processors, and wait for their answer.
This architecture is asynchronous, thus the time-formula are of the form

Time = T, + max(Ty, Tq) + T

where T,,T;,T., Ty are time-formulee themselves. Thus it is possible to determine conditions on time-
variables such that the maximum of T; and Ty is Tj, and wice-versa. Finally, one obtains a time-formula of
the form

f1 lf C1

f2 ifer
Time = .

fr ifec

where the f; are time-formulae without any maz function, and the c¢; are sets of linear constraints involving
the time-variables.

5. Transformation of SIMD into MIMD programs

The micro-analysis of SIMD and MIMD programs suggests to the author the following two-step algorithm
to translate a SIMD program into a MIMD program:

— first translate the SIMD program into an intermediate sequential program, by replacing all parallel
variables by arrays (the index represents the processor number), and regrouping instructions that
do not need synchronization in blocks as large as possible.

— then translate the intermediate sequential program into a MIMD program, by dividing the iterations
of synchronization-free loops between the MIMD processors. The optimal number of processors is
computed using micro-analysis tools (because of the overhead for starting a new process, the optimal
number is not necessarily the maximum).

157



1V Analysis of Algorithms and Data Structures

Appendix: on the cost of grid communication for the CM-2

A. Weitzman found the following interpolation formulze for the communication time F'(n) for distance
n. Fy represents F' on the interval [2¢,2¢%1]. The function F' has a recursive representation defined by the
following formula:

Fs = —|18(n—48)|+801 if2° <n <2°
Fs = —|18(n—96)|+ 1089 if26<n <27
A if 2 <n<242°
A’ if 2041 — 25 < p < 2041
F = 204 2F <p <204 2041 op if 20 <m <2t i >7

Fp +576 if | 2041 — 28+l < < 2041 _ 9k
where 5 <k <i1—2

where :
A = 18(n+28)
A" = 18(—n+ 28)

For example, Fgis Ao F50Fso FsoF50A’, where f ¢ g represents the juxtaposition of f and ¢. In fact, F;
can be represented as Ao F50 Fgo---0F;_90F;_20---0F50F50A’. The function F; can be approximated
using the central limit theorem:

F, o~ 172i—146 if28<n<2+! i>5

We can define the optimal cost F'(n) of grid communication between two processors at distance n on the
Connection Machine as follows:

F(0) = 0
F(28) = 1
F(n) = 1l+min(F(n—2"), F(2"" —n)) for 28 < n < 2F¥!

This function can be easily defined in MAPLE:
F := proc(n)
local k;
k := log2(mn);
if n=2"k then 1 else 1+min(F(n-2"k),F(2"(k+1)-n)) fi;
end:

log2 := proc(n) if n=1 then 0 else 1+log2(iquo(n,2)) fi end:
> seq(F(i),i=1..50);
1, 1,2,1,2,2,2,1,2,2,3,2,38,2,2,1,2,2,3,2,3,3,3,2,3,3,

3, 2,3,2,2,1, 2, 2,3,2,3,3,3,2,3,3,4,3,4,3,3,2,3,3

where iquo(n,2) is the MAPLE notation for the integer quotient of n by 2, and the auxiliary function log2

computes the floor of the logarithm in base 2. The smallest n such that F(n) = 4 is 43 = 2° + 23 4 21 4 20,
This function F' appears in several fields of computer science. For example, in arithmetics and num-

ber theory, F(n) is the minimal number of multiplications or divisions needed to compute a”, once we

know a, a?,a*, a8, .... This is the well-known problem of addition-subtraction chains which was studied by

F. Morain and J. Olivos [2] to speed up the computations on an elliptic curve.

158



Transformation of Parallel Programs Guided by Micro-Analysis

The sequence (f, = F'(n)) is also interesting because it is 2-regular, that is that the sub-sequences (f,,),

(fan), (font1), (fan), (fan+1), (fan+2), (fans3), (fsn), ... span a vector space of finite dimension. Namely,
Ph. Dumas determined that (f,, font1, fan+1, fan+3) is a basis of that vector space and that

fon = fa, fon+1 = fan+t1, fen+3 = fonts = —fa + font1 + fant1, fen+7 = fanys.

Philippe Dumas suggests that defining 6, = Af, = fo+1 — fn» and using the Mellin-Perron formula as in

Ficure 1. Plot of ¢,,/n as a function of log(n), for 1 < n < 1000.

[1] would give some asymptotic estimates for the cumulated series g, = f1 + --- + f. In fact, Mordecai
Golin already discovered a fractal form for g, (figure 1) that looks like the fluctuations in the average case
of Mergesort [1].

Bibliography

[1] Flajolet (Philippe) and Golin (Mordecai). — Mellin Transforms and Asymptotics: The Mergesort Recur-
rence. — Report, Institut National de Recherche en Informatique et en Automatique, January 1992. 11
pages.

[2] Morain (F.) and Olivos (J.). — Speeding up the computations on an elliptic curve using addition-
subtraction chains. RAIRO Technical Informatics and and Applications, vol. 24, n° 6, 1990, pp. 531-543.

159



