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Abstract

In this talk, the author shows the relationship between two classical data compression
algorithms due to Lempel and Ziv [9], and well-known data structures, namely Digital
Search Trees and Suffix Trees. Hence, the performance evaluation of these data compression
algorithms reduces to the analysis of some tree parameters. Second-order properties are
derived. A normal limiting distribution is conjectured. Also, some open problems are given.

1. Introduction

Section 2 briefly presents data compression and the relationship to trees. Then, in Section 3, we study the
relationship between tree parameters and data compression performance; we formulate some mathematical
problems. Section 4 deals with second order properties, and notably describes the approach of the author.
Finally, we provide in Section 5 a small list of open problems. Most of these results appear in INRIA research
report [11] and in [6].

2. Lempel and Ziv data compression algorithms

The data compression problem is the following. Some “known” string of length n, the so-called database,
is given. One must find the longest substring of the database string that is identical to a yet “unknown”
sequence (to be manipulated). Lempel and Ziv algorithms realize a partition of the database sequence into
blocks. This is called parsing. The parsing satisfies the following properties:

(i) blocks are pairwise distinct;
(ii) each block that occurs in the parsing has already been seen somewhere to the left.

EXAMPLE. Let us consider sequence
11001010001000100

In the first algorithm, LZ1, overlapping is not allowed, that is a previous occurrence is not taken into account
if it is shared between two consecutive occurrences. Overlapping is allowed in the second one, LZ2. This
leads to the two partitions:

(1)(10)(0)(101)(00)(01)(000)(100) : LZ1
and
(1)(10)(0)(101)(00)(01)(000100) : LZ2
Note that difference occur at position 12. Sequence 000 occurred before, but is split between blocks 5 and 6.

LZ1 is associated to a digital search tree built on the block sequence read from left to right. LZ2 is
associated to a suffix tree. We present on Figure 2 the tree associated to LZ1.
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FicGUure 1. A digital tree representation of Ziv’s parsing for the string 11001010001000100. ..

3. Relevant parameters

The relevant parameters for data compression are:

— M,: number of phrases built over a (random) sequence of length n;

— M, (k): number of phrases of length £;

— 1 length of the m-th phrase;

H,,: length of the longest phrase;

— I: longest substring that can be duplicated;

— Nj: size of a database having two copies of some substring of length .

The relevant parameters for a digital search tree are given below. We consider a tree built over n strings.
— Dp(m): depth of the m-th string;
— D, depth of a randomly selected string:

— I, = Dpyi1(n+1): depth of insertion;

— Hy: height of the tree, i.e. maxj<m<n(Dn(m));

— Sp: shortest path in the tree, e.g. minj<m<n(Dn(m));
— L, : external pathlength

L, = z": D, (m);
m=1

— Zyn : size of the tree, i.e. number of internal nodes.

130



Data Compression and Digital Trees

We now provide a list of relationships between data compression and tree parameters.

Non-overlapping parsing algorithm LZ1.

(1) Zm, = Mpya,

(2) Ly,-1 < n <Ly,

(3) by = Dp(m) = I,

4) My (k) = # of internal nodes at levelk.

Parsing algorithm LZ2.

®) o= I = P )
(6) I, = I, = Dy(n),
(7 Dn,(1) = L

Unfortunately, there exists no simple relationship between M,, and L,. We only have:
M.,
E lk =n.
k=1

4. Deriving limiting distributions

First order properties, i.e. average values, convergence in probability or almost sure have now been derived
for many classes of trees. See notably [1, 8, 10] for Digital Search Trees and [13] for suffix trees.

Second order properties, e.g. variances, large deviation results and limiting distributions are less known.
Most results are derived for tries [2, 4, 5, 7]. Digital Search Trees were open.

The first result presented is the limiting distribution of the number of phrases of length &, in LZ1, i.e.
My (k) or D,. One proves:

THEOREM 1. (i) For the symmetric Bernoulli model the limiting distribution of D, is

1 & gtz

(8) lim Pr{D,, =z +log,m} =2""1[14 — Z(—l)Z'H L :
m—co Qoo i—0 Q;
or such real x that x +log, m is integer, with Qr = K (1=279). (ii) In the asymmetric case, the limiting
g2 j=1
distribution of Dy, is normal, that is,
Dy, — ED,,

(9) ———— — N, 1)

vVar D,
where EDy, and Var Dy, are given by (10) and (11), respectively.

1 bil
(10) EDpy, = n <logm+’y—l+ﬁ+9+6(m)> + O(log m/m)
H—h? ,
(11) Var D, = Tlogm + A+ A(m) + O(log® m/m)

Moreover, the moments of D,, converges to the appropriate moments of the normal distribution. More
precisely, for any complex ¥

2 U
(12) e—ﬂcllong(eﬂDm) _ e@%logm (1 + O( ))

ogm
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where ¢; = 1/h and ¢; = (H — h?)/h3.

PrROOF. One considers the generating functions B, (z), where [zF]B,(2) is the average number of internal
nodes at level k. One proves the recurrence equation:

(13) Bn(w) == (1= 0 Y0 () @imat)

where i
(14) Qr(u) = H(l —u277).

Since the formula for Qy(u) is relatively simple, we can extract coefficients of By, (u) “by hand”.

Note that Qr(u) = Qoo(u)/Quo(u2™F), and, as in Louchard [10],

1 = N i
where
(16) Ry = (—1)"* 271

Qi
with @; = Q;(1). Let now [u*]f(u) denote the coefficient at u* of f(u). Note that

n

R, _
[W"1Qu—2(w) = = 3~ ity

=0
Hence applying this to our basic solution (13) we obtain

J+1

Ip.
W) = 3 (-2 -1 =)
=0
_ i%((l_r’)m_l—mﬂ).

=0 !

Finally, after some tedious algebra one obtains an explicit formula as in Louchard [10], and taking m — oo
we easily derive part (i) of Theorem 1 (see also Mahmoud [12], Ex. 6.12).

Alternatively, Mellin-like or Rice method can be used to find an asymptotic solution. Then, one may use
Cauchy formula to extract coefficient M, (k). In the asymmetric case, one considers Dy, (u) = Bp,(u)/m. O

We come now to the second result: the limiting distribution of the number of phrases M,, in LZ1.

THEOREM 2. (i) The length of a randomly selected phrase for the symmetric Bernoulli model has the
following limiting distribution

1 < L2712
(17)  lim Pr{D5% =z + logy(n/logyn)} = 2°~* (1 ow E(_lyﬂTe—? e
*® i=0 i

for such real x that  + log,(n/log,n) = j is an integer.
(ii) For the asymmetric Bernoulli model the typical depth DEZ is normally distributed. More precisely,

DEZ _ ¢ log(nh/logn)
eolog(nh/logn)

(18) — N(0,1)
provided our Conjecture is true. In fact, the rate of convergence is 1 + O(1/+/logn).
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ProOF. The author expresses this random variable DLZ as a function of the r.v. D,, of the previous
theorem. [

The third result is about external path length. In [6], it is proven that:

THEOREM 3. Consider a digital search tree under the asymmetric Bernoulli model. Then,
Ly —eymlogm
Veamlogm

where ¢; = 1/h and co = (H — h?)/h® with h = —plogp — qlogq being the entropy of the alphabet and
H = plog’p + qlog*q. That is, for = real we have lim,,_ o Pr{L,, < cimlogm + z\/comlogm} =
1/V2r [° e=t*12dt. Moreover,

(19) — N(0,1),

(20) EL, = ecimlogm+ O(m)
(21) Var L,, = ecamlogm+ O(m),

and all moments of L,, converge to the appropriate moments of the normal distribution. In the symmetric
case (i.e., p=q = 0.5), the internal path length LY™ still satisfies (19) with ELY™ ~ log, m and

(22) Var L}¥™ ~ (C + é(log, m))m

where C' = 0.26600 ... and 6(x) is a fluctuating continuous function with period 1 (cf. [8]). In this case, the
convergence in moments also holds.

ProOF. The scheme of the proof is similar to [3]: the bivariate generating function for the external path
length is defined by two equations:

“/m
(23) L1 (u) =u™ > <k>pkqm_kLk(u)Lm_k(u).
with Lo(u) = 1. Hence, also

(24) = L(pzu,u)L(qzu,u)

with L(z,0) = 1.

(1) one first analyzes the Poisson model that is characterized by the exponential bivariate generating
function L(z,u) satisfying (24).

(2) In order to solve (24) one tries to transform it into an additive functional equation by considering
log L(z,u). This is only possible if one proves the existence of log L(z,u). Hence, one proves that
there is a convex cone around the real axes such that for some x(u) we have log L(z, u) = ©(z**).

(3) Next, one uses Taylor expansion of log L(z,u) in the convex cone to show that for large z the
generating function L(z,u) appropriately normalized converges to the generating function of the
normal distribution.

(4) The final effort is to de-Poissonize the latter result, that is, to transform the normal distribution of
the Poisson model into the normal distribution of the Bernoulli model.

5. Open problems

Many problems remain open. One would like to extend first and second order results in the case of
Markovian distributions. Also, the variance of the external path length is of interest for asymmetric Bernoulli
model and various classes of trees: Digital Search Trees, tries, Patricia tries.
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