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1. General Introduction

Scientific community is becoming aware of the power and utility of symbolic computations softwares. One
of the most surprising achievements of these programs is the ability to perform formal integration, that is:

Given a function f(z) (possibly with parameters), find a function F'(z) such that:

(1) Fi(z) = f(2).

Most mathematical students have learned how to find such primitives, generally with heuristics. The
important point here is that symbolic softwares (like Maple) use algorithms which can:

(1) prove or disprove that the primitive of f(z) can be expressed with elementary functions;
(2) find a solution to problem (1).

It is these techniques that we want to introduce here.

Our main interest will be the integration of rational functions and of purely transcendental functions (this
will be made more precise later). We will focus on the integration of rational functions first, as the main
algorithm can be derived (in structure) from this basic case. We consider that we have some basic tools “at
hand”, which are common to symbolic softwares. This toolkit includes ged operations, extended FEuclidean
algorithm, and some linear algebra techniques.

2. Rational Functions

We want to solve the following problem: given F' € Q(z), we want to find [ F. As a preliminary step, we
can write
Q

F=P4+ =
+R

where P, (@, R are polynomials, () and R are coprime and deg () < deg R. The polynomial P can be easily
integrated, so the remaining task is to compute a primitive of /R.

2.1. Structural approach. From the theoretical point of view, the following theorem is well known.

THEOREM 1. Let R =], (z —a;)™ be the factorisation of R, the fraction Q/R can be written

i=1l..n

Q B;
= _— B; , deg B; i
R Z (z — a)’ € Q[] egB; <n

We can rewrite this sum

Z Z Z—a)J bij € Q.

i=l.nj=1..n;
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Then the primitive of Q/R is

Q_ « , . H
[3= % bige-ar- ¥ ot

i=1l..n i=l.nj=2..n;

This gives some insight about the result: the simple factors of the denominator give logarithms in the
result, while multiple factors give rational functions. However, this formula is not practicable, for many
reasons:

The factorization of R has to be known, and it is not easy to compute. We shall see that it
is not needed in practice.

Furthermore, this factorisation gives rise to algebraic numbers, whose use is expensive. One
rule in computer algebra is “stay in Q) as most as possible”.

Consider the following rewriting of Q:

A B
2 F=P4+=4=

where A,B,D E P are polynomials in Q[z], D is square-free, and F has only multiple factors. We want to
deal separately with A/ D, which leads to logarithmic terms, and with B/E which leads to rational functions.
We recall that the square-free decomposition of a polynomial P is the decomposition

P=PP; .. P"

where the polynomials Py, ..., P, are pairwise coprime, and each P; is square-free. We shall call m the
highest multiplicity of P. This decomposition is not hard to compute, using differentiation of polynomials
and ged operations (Consider it as given in the basic toolkit).

In fact the algorithm computes step by step:

~ 7 ~
A B
FIQ*(B)*E’

such that the highest multiplicity of E has been decreased, so that we have to solve the same problem with
lower highest multiplicity, until we are left with a fraction whose denominator is square-free.

This process of decreasing the highest multiplicity of the denominator is called the Hermite reduction,
which gives the rational part, and the logarithmic part (for a square-free denominator) is found by the
method of the Rothstein-Trager resultant.

2.2. The Hermite reduction. The algorithm dates back to Hermite. We sketch a modern version due
to Mack. We present the iterative step of the method.
Input P/Q, deg P < deg @, gcd(P, Q) = 1, the highest multiplicity of @ being m > 1.
Output R, B, E € Q[X] such that P/Q = (R) + B/E, the highest multiplicity m’ of E being lower than
m.

— Obtain a square-free decomposition of @), and define G and G* as shown:
Q=01Q5 - Qn=0Q1(Q2Q3 Qnm)Q20Q3 - Q"
G* G

— Compute QG’/G? = Q1G*G'/G, which can be seen to be prime to G*.
— Using the extended Euclidean algorithm, compute the Bezout coefficients A, B of P:

G*G'
G

B__<é)+éﬁii§
Q G Q.G

60

P=A: + BG*

This leads to



Introduction to symbolic integration

— Return R = —A/G, B= A'Q1 + B, £ = 1 G. The highest multiplicity of £ is now at most m — 1.
ExaMpPLE. We consider the following function

27— 24z — 427 +82 -8 P

I= B 46254+ 1244822 Q
Using this algorithm:
G = gd(Q,Q)=2"+4"+ 42
QG* = Q/G=2+22
gcd(G,G*) = 2242

Q1 = (G)/(G]ged(G,G") =1
QG*G' /G = 52742

By Bezout, we have P = —(822 + 4)(52%2 4+ 2) + (2* — 222 4+ 162 + 4)(23 + 22). Thus

fo 82244 \ | 242244
T\ 54423 +42 25 4423 4+ 427

Again, for the second term, the algorithm gives:

G = 2242
QG* = Q/G=2+22
ged(G,G*) = 1
Q1 = =z

QGGG = 2%
We get the Bezout coefficients 2z — 222 + 4 = —3(22?) + (22 + 2)(2? + 2). Eventually:

822 4+ 4 3\ 1
f= <25+4z3—|—4z+z2+2) +Z

2.3. The Hurwitz-Ostrogradsky method. It is possible to compute directly the result by the follow-

ing remark. The aim is to compute
P ( A)' c
(= 4+ —
Q G Q1 Qm

* 1

— A’ * )
a .G+ CG

with the conditions: deg A < deg G, deg C' < deg(@1G*). This is a linear system in the coefficients of 4 and
C', which can be directly solved by a linear solver (again in the basic machinery of the toolkit).

1.e.

P =A@\

2.4. The logarithmic part. Now it remains to solve the problem for a fraction f = P/Q, where @ is
square-free. At this point two difficulties must be pointed out. Consider the example

52% + 602° + 25527 + 450z + 275
2% 4 1524 + 8523 + 22522 + 274z + 120

(3) f=
whose primitive is

25 5 5 5 25

7 log(z+ 1) + 6 log(z + 2) + 2 log(z + 3) + 6 log(z +4) + 72 log(z + 5),

given in expanded form. If the factors where factored in simple logarithm, it would be the logarithm of a
degree 120 polynomial, with coefficients of order 10°®. So the problem of the growth of intermediate numbers
is present here.
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The other difficulty is that algebraic numbers may be required in the solution, as shown by the example:
/ dz B \/51 z—/2
2_2 4 5.1/

Then the problem is to compute in the extension of Q of lowest degree.
The method of Rothstein-Trager gives a good solution. Consider

P a;
f=0= 2 o

i=1l..n

— One can check that a; = P(;)/Q’(;), thus the polynomials @ and P — ;@' have a common root
a;. So a; is a root of R = Res,(Q, P — tQ’) which belongs to Q[t]. (Res, stands for the resultant
i z, another basic tool, which gives algebraic conditions on coefficients for two polynomials in z to

have a common root.)
— Then «; is a root of G; = ged(Q, P — a;Q’) which belongs to Q(a;)[z]. These roots can be collected
for each a;: for each such a;, the answer is

a; Z log(z — ) = a; log(Gy).
;|G i(a;)=0
— The final answer is P
[5= X alossed(@ P -aQ)).
a|R(a)=0
It must be pointed out that this is the expression of the primitive in the lowest degree extension of Q.

ExaMPLE. We consider the function f given by (3).We have Res ,(Q, P—tQ') = (5—4t)(6t—5)%(24t—25)?,

and

/f:%log(z—l—?))—l— > alog(22—|—6z+20—72%).

25 5
ae{s} 2

3. Elementary functions
3.1. Definition. The classical definition of elementary functions, after Liouville’s work, is:
DEFINITION 1. Let K be a differential field, y is said to be elementary over K if K(y) and K have the

same field of constants, and if

(1) either y is algebraic over K,
(2) or there exists f € K such that f' = fy’ (i.e. y is some kind of logarithm),
(3) or there exists f € K such that ¥’ = yf’ (i.e. y is an exponential).

Now the following theorem gives an important characterization of functions which admit an elementary
primitive:

THEOREM 2 (LIOUVILLE). Let K be a differential field, and C be the field of constants of K, f € K
admits an elementary primitive over K if and only if f can be written

m !
1 )
- )
f + Z v
=1
where v € K, ¢; € C, u; € K.

The integration algorithm in the case of algebraic functions relies on a much more difficult theory, which
borrows some tools from algebraic geometry. It is not within the scope of this talk to explain these. So we
shall restrict ourselves to transcendental functions, which are amazingly simpler to deal with.
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3.2. The strategy of Risch’s algorithm; transcendental case. The Risch algorithm appears to be
a slight generalisation of the method we have described here for the case of rational functions. We give here
Bronstein’s version of Risch’s algorithm, in the transcendental case:

— Find a tower of extensions of ) given by 6; = z,8,,...,0; such that ; is elementary over the
previous field Q(6y, .. .,0;—1) for every ¢, and such that f € Q(04,...,0;). We note § = 0.
— Write f = A(0)/D(0), with A, D € Q(61,...,0k_1).
— Split D into D = D¢D,, where D; is the product of the square-free factors F' of D such that
ged(F, F') # 1. We rewrite the function f as follows
B C
=P = - = s n-
f t ot fot+ 1o+ 1,
Here f, is called the polynomial part, f is the special part, and f, the normal part.
— A more general case of Hermite’s reduction is applied, to eliminate all factors of the denominators
whose highest multiplicity is greater than 1. This gives

f=fh+d +h

where the denominator of A has no multiple factors.

— A Rothstein-Trager resultant is computed to find the logarithmic part (or to decide it does not
exists).

— The polynomial part f, is integrated by an appropriate method, whether y is a logarithm or an
exponential.

It is understood that it is a recursive method, since an effective method for the case k = 1 (i.e. a simple
extension) gives a method for the general case, where computations are performed is some tower of extension,
where arithmetic is effective, and primitives recursively computed.

3.3. More details. Now we give details about the main steps of Risch’s algorithm. For constructing
the extension tower, and finding the primitive of the special part, see the references.

3.3.1. The Hermite reduction We are concerned with the normal part A/D,,, which we would like to
rewrite A/D,, = ¢’ + P + B/Q,, where @,, has no multiple factors. As before we describe a single step of
the method, for reducing the highest multiplicity at least by one.

Let VF+1 be the highest exponent in the square-free decomposition of D,,, that is D, = UV**+! where
V is square-free, gcd(U, V) = 1 and the highest multiplicity of U is less than k.

We seek two polynomials G, H € K[f], such that deg G < deg V" and

A (G  H
gver —\vE) TovE
(Remember that our goal is to lower the highest multiplicity of the denominator.) A small computation

gives the relation A = UVG’' — kUV'G 4+ V H, and modulo V, we have

G = mod V.

A
kUV!
Again we pick in our basic toolkit the extended Euclidean algorithm to compute A/kUV’ mod V. H is easily
computed from the data of A, U, V, G k.

ExaMPLE. Consider
z — tan(z)

f= tan?(z)
The following equation is to be solved for G, H € Q(z)[6], degG < 1:

=0 _(GY, H
w ~\o) "0
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This leads to G = —z mod 6, and H = —0z, thus f = (—z/0) —z and [ f = —z/(tanz) — 2?/2.

3.3.2. The Rothstein-Trager resultant We consider f = f, + f; + G/D, where D is square-free. Again
we consider

R(z) = Res (G — zD', D).

The function f has an elementary primitive if and only if R(z) = BP(z), where § € K and P € K[z] is
a monic polynomial with constant coefficients. It may happen that the coefficients of R(z) have a non-zero
derivative, in which case f has no elementary primitive.

The logarithmic part of the primitive is

/ G _ alog(ged(G — D', D)).
oz|R(oz) 0

3.3.3. Polynomials parts
First we describe the method for a polynomial in log(u(z)). Consider

I = am(2)log™ u(2z) + am—1(2) log™~* u(z)+ -+ a1(z) logu(z) + ag(2).
The Liouville principle implies that, if f, admit a primitive, f, can be written

m k Cﬂ)g
:2:: 2)log'(z) = (Zblog u( ) —1—2 o

i=1
Identification gives
0 = B,

/

B+ (i+1)Biy1i—, 1<i <m.
u

A;

Thus each B] can be iteratively computed, and again each B} is integrated by a recursive application of

the algorithm, and is found up to a constant. Furthermore, by identification, the constant of B;4; is found.
EXAMPLE.

7 <3+ 1 9 2z )1 2()+ 2log z 4 2
== - og” (2
2z log(z+3%) (224 1)log(z + 1) 8 log(z+3)  (2z+ 1)log(z + %)

We let 7 = log(z + 1/2), and 0 = log z, such that F' = A20? + A10 + Ag, A; € Q(z,7). A primitive has the
form Bo03 + B20? + B10 + Bo + Y. ¢;v'i/v; and:

(1) 3_0thungzb3€@.

(2) A2 = B} + 3B30'. Recursively we get [ Ay = 30/2 + 2/, this implies b3 = 1/2 and By = z/7 + bs.
(3) A1—2/T—B + 2b50". Again we get [ A; —2/7 =0 and by =0, By = by.

(4) Ao = B+ 10" + Y civi/vi. [ Ao = loglog(z + 1/2), thus by = 0, By is a constant, and ¢; = 1,

v =T,
In the end, [ F' = log(z)3/2 + zlog®(z)/log(z + 1/2) + loglog(z + 1/2).

We explain the algorithm for a polynomials in exponential terms: let f, be
fo = am(z) exp(mu(z)) + am-1(2) exp((m — Du(2)) + - - + a_p(Z) exp[—pu(2)].
The Liouville principle implies that the primitive is of the form } ;> p b;(z) exp(iu(z)), with
by + iu'b; = a;

which is called the Risch differential equation. This equation can be solved without difficulty since only
rational solutions are required.
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ExampLE. [ ¢=#". The Risch differential equation is
b'(2) —2zb(z) = 1

for which a rational solution is to be found. Because there is no pole in the coefficients of the equation and
the leading coefficient is constant, b(z) has no pole, and so must be a polynomial. But degree constraints

—z

show this equation has no polynomial solution. Conclusion: [ e ** is not elementary.
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