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Abstract

Computer algebra systems can be of help in the asymptotic analysis of combinatorial
sequences. Several algorithms are presented, most of which have been implemented in Maple.

Introduction

We assume a sequence is given, either by its first terms or by a combinatorial description of a class
of objects it enumerates. The main tool we use is the generating function of the sequence. The idea is
to consider this formal power series as an analytic function. When the series has a non-zero radius of
convergence, Cauchy’s theory makes it possible to find an asymptotic estimate of the sequence we started
with.

1. From the sequence to the series

The preferred method naturally depends on the available information concerning the sequence.

Empirical method. When only the first few terms of the sequence are known, there are a prior: an infinite
number of possible sequences, and there seems to be little sense in looking for an asymptotic behaviour.
However, there is quite often a “simple” sequence defined by these first terms. This approach was initiated
by F. Bergeron and S. Plouffe [2], who looked for Padé approximants of the generating series. When the
number of non-zero coefficients of the Padé approximant is “significantly” smaller than the number of given
terms of the sequence, it is natural to conjecture that the generating series is rational and that a closed-form
was found. This method can be extended by applying it to the logarithmic derivative or to the functional
inverse of the given power series, which yields nice generating functions.

With P. Zimmermann, we applied this idea of looking for a “simple” generating function given its first co-
efficients to the quest of “holonomic” sequences, i.e. sequences satisfying a linear recurrence with polynomial
coefficients. Rather than looking for a Padé approximant, this recurrence is sought by an undeterminate
coefficients method. When the number of non-zero coefficients of the recurrence is “sufficiently” smaller than
the number of given terms, the recurrence is conjectured as being satisfied by the whole sequence. This is
implemented in the Gfun package [12].

Both these methods are very efficient in practice. Among the approximately 6000 sequences of the next
edition of Sloane’s book [14], roughly 25% of the sequences are thus conjectured rational, and an extra 5%
are conjectured holonomic non-rational [9].

Combinatorial method. A large number of sequences f,, enumerate the number of objects of size n in some
decomposable combinatorial data-structure. This means that the structure can be expressed in terms of a
small combinatorial toolbox comprising cartesian product, disjoint union, list, set, cycle and basic atoms.
Thus the structure “functional graph” (the graph of an application of a set of n elements into itself) is
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expressed as a set of connected components, these components being cycles of trees, these trees themselves
being recursively defined as the cartesian product of a node (the root of the tree) by a set of trees.

The A2 system, developed jointly with P. Zimmermann and Ph. Flajolet [3, 4] implements a translation
of these combinatorial specifications into equations relating the corresponding generating functions. In the
example of functional graphs, the first part of the system will produce the following equations:

FuncGraph(z) = exp(comp(z)), comp(z) = log[1/(1 — tree(z))], tree(z) = z exp(tree(z)).

A second part of the system then attempts to find an explicit form of the generating function from this
system. For, in its current state, the asymptotic part of the Ay{2 system can only handle explicit generating
functions. In this example, thanks to Maple’s W function, the following “explicit” form is obtained:

1
14+ W(-z)

Conclusion. Two very different methods have been described to obtain the generating function of a se-
quence. The first one finds holonomic generating functions, i.e. solutions of linear differential equations
with polynomial coefficients. The second one is more combinatorial and finds generating functions that obey
functional equations expressed in terms of some “elementary” functions. In some cases, these equations can
be solved.

Known algorithms to get “explicit” forms from these equations can be summarised as follows.

— Liouvillian solutions of linear differential equations can be obtained by Kovacic’s algorithm for the
case of order 2. This algorithm is (at least partially) implemented in most computer algebra systems.
An algorithm due to M. Singer treats the general case, but is not practical. The third order has
been made practical by F. Ulmer, but there is no generally available implementation;

— Hypergeometric solutions of linear differential equations can be found by an algorithm due principally
to M. Petkovsek, without any limitation on the order of the equation [8];

— Elementary functional equations can only be solved in some special cases.

2. From generating functions to asymptotics

When the generating series defines an analytic function, Cauchy’s formula yields the nth Taylor coefficient

as . B
n z
["11(2) = T z”+1d ’
The path of integration is a closed contour containing the origin and no other singularity.

We are looking for an asymptotic estimate as n tends to infinity. First of all, Hadamard’s rule implies that
the coefficients grow roughly as 1/R", where R is the radius of convergence. This relates the exponential
growth of the Taylor coefficients of a generating function to the location of its singularities. Besides, simple
functions whose coefficients are known, such as 1/(1 — 2)®, give the intuition that sub-exponential growth of
the coefficients is related to the local growth of the generating function in the neighbourhood of its singularity
of smallest modulus. This can be made precise.

2.1. Singularity analysis. In 1878, G. Darboux treated the case of algebraic singularities. This result
was extended by R. Jungen in 1934 to handle singularities in (1 — 2)® log®(1 — z), where k is a non-negative
integer. Finally, Ph. Flajolet and A. Odlyzko [5] described the more general case where the exponents
of (1 — z) and of the logarithm are complex numbers. These methods yield a full asymptotic expansion of
the Taylor coefficients.

This leads to the following algorithm to find the asymptotic expansion of coefficients of a generating
function.

(1) Locate the singularities of smallest modulus;
(2) Compute the expansion of the function in the neighbourhood of these singularities;
(3) Translate this expansion into the expansion of the coefficients.
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The last step above is easy. We now insist on how the first two steps can be automated. This depends on
the type of equation defining the generating function.

When the generating function is given as a solution to a linear differential equation, its singularities are
found among the poles of the coefficients of the equation and the roots of its leading coefficient. Since the
coeflicients are polynomials, singularities in this case are therefore algebraic numbers. When the generating
function is given explicitly in terms of elementary functions, it is easy to find a set of points containing the
singularities by a recursive algorithm.

Then one has to compare the moduli of the singularities. Algebraic numbers can be compared by purely
algebraic methods using resultants and Sturm sequences. It is also possible to make use of guaranteed
numerical estimates, see [6]. In the more general case of elementary constants one is confined to heuristics,
the problem being related to difficult questions of transcendency.

Once the dominant singularities have been located, one looks for the local behaviour of the generating
function in the neighbourhood of these singularities. When the function is given explicitly as an exp-log
function (functions built up from @ and z by field operation, exp and z — log|z|), a recent algorithm
due to J. Shackell [13] makes it possible to compute the local expansion. When the generating function is
holonomic, the possible behaviours have been given by E. Fabry in 1885, and have the form

exp[P(1/(1 = (z/p)Y D)L = 2/p)* Y ér(2)log" (L = z/p),

where ¢y are formal power series in 1 — z/p. Such local solutions can be determined automatically [15].
Once a basis of local solutions has been found, one has to find the right linear combination in terms of the
first elements of the sequence. While these elements are given by the Taylor expansion of the function at the
origin, we have a basis of local solutions at the singularity. Besides, the formal power series ¢ are generally
divergent. One must then resort to the theory of resummation [1].

2.2. Saddle-point method. When the function is entire or has a singularity of a more “violent” type
than a mere algebraico-logarithmic type, it is often possible to use a saddle-point method. Setting h(z) =
log(f(z))—(n+1)log z, the contour of Cauchy’s integral is deformed to pass through a point (the saddle-point)
where h'(z) = 0. With a few extra hypotheses, Cauchy’s integral is then concentrated in the neighbourhood
of the saddle-point and the integral can be approximated by a Gaussian. If we denote the saddle-point by R,
the nth coefficient is then estimated as

f(R)
Rrt+l, /27h" (R)
To automate this method and the approximations it requires, one uses a theorem due to W. K. Hayman [7],

which makes it possible to decide sufficient conditions under which the method applies. A last technical
problem is that the saddle-point is often only available as an asymptotic expansion deduced from the equa-

[2"]f(2) ~

tion A'(R) = 0. An algorithm to compute this expansion under very general conditions has been developed

in [11].
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