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Abstract

The goal of this paper is to present a panorama of the fundamental properties of cycle
index series and asymmetry index series within enumerative combinatorics, as well as a few
concrete applications. A given structure is said to be asymmetric if its automorphism group
reduces to the identity. We introduce an asymmetry indicator series Tp(x1,2a,23,...)
by means of which we study the correspondence F — F in connection with the various
operations existing in the theory of species of structures. It is shown that all these operations
are automatically computable but this aspect is not developed in the summary.

1. Species and Asymmetry Index Series

Given any finite set U, let us denote by A[U] the set of all rooted trees having U as underlying set
of vertices. Clearly, every bijection §: U — V between finite sets induces another bijection which
we denote by A[f] : A[U] — A[V] and call the transportation of rooted trees along 3 (we replace
each vertex u in a by the corresponding vertex ((u)). Of course, transportation commutes with
composition in the following way: given any two successive bijections g : U — V, 5 : V — W, we
have A[3' o B3] = A[3'] o A[B] and A[ly] = 1a[p) (where 1y denotes, as usual, the identity bijection
of a finite set U into itself).

A combinatorial species [5] is a functor from the category of finite sets and bijections into itself.
In other words, a combinatorial species is a rule F' that associates a finite set F[U] to any finite
set U and a bijection F[fF] : F[U] — F[V] to any bijection g : U — V. An element s € F[U] is
called an F-structure on the underlying set U. The bijection F[f3] is called the transportation of
F-structures along 3.

In the case of weighted species F', each F-structure s is given a weight wp(s) in a certain com-
mutative ring R and the transportation F[5] must preserve these weights.

Given a species F' and two F-structures s € F[U] and s’ € F[V], an isomorphism [ from s to
s’ is a bijection §: U — V such that F[3](s) = s’. Two isomorphic F-structures are said to be of
the same type. An automorphism of s is an isomorphism from s to s. The automorphisms of any
given F-structure s form a group called the automorphism group of s. When this group is trivial,
the structure s is said to be asymmetric.

For each integer n, consider now the set n = {1,2,...,n}. It is easy to see that any species F
induces, by transportation, a countable family of actions of the symmetric group 5, :

Sn X Fln] — Fln], n=0,1,2,....
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Given a weighted species F, the formal power series

n

F(z) = Efn%, Fe)=Y fua", Fx)=Y fua",

n>0 n>0 n>0

whose coeflicients are defined by

Jn = the sum of the weights of the F-structures on any n-element set

= the sum of the weights of the elements of F[n],

Jn = the sum of the weights of the types of F-structures on any n-element set
= the sum of the weights of the orbits of the action S, X F[n] — F|n],

f, = the sum of the weights of the types of asymmetric F-structures on any n-element set

= the sum of the weights of the n!-point orbits of the action S, x F[n] — F[n],
are respectively called the (exponential) generating series of F', the types generating series of F,
and the asymmetry types generating series of F.

ExaMmPLE. For every n > 0 let

@, = the number of rooted trees on n given vertices
= the number of elements of A[n],
G, = the number of types of of rooted trees on n vertices
= the number of orbits of the action S, x A[n] — Aln],
@, = the number of types of asymmetric rooted trees on n vertices

= the number of n!-point orbits of the action S, x A[n] — A[n].

These sequences of numbers can be “encoded” into the series

Aw) = Yo a2l 4 0L bl o2l 4 77765 4 1176495 1
€T)= p— =1 ar ) — —_— — J— ceey
"] 21 " 73l A1 51 6! 71
A(x) =Y a,a" = o+ 2” + 22° + 4 + 92° + 202° + 4827 + 11525 + -+ -,
n>0
A(x):Z@nﬂf":x+x2+x3+2x4—|—3x5—|—6x6—|—12x7—|—25x8+...‘
n>0

Given two species F and G, other species can be constructed: the sum F 4+ G, the product F -G,
the substitution F(G) (also denoted F o (G), and the derivative F' (also denoted dF/dX). The

generic structures belonging to each of these species are described as follows:

(1) sis an (F + G)-structure on U iff s is an F-structure on U or a G-structure on U (the “or”
is an “exclusive or”),

(2) sisan (F-G)-structure on U iff s = (f,g) where fis an F-structure on Uy, ¢ is a G-structure
on Uy, and Uy UU, =U, U N U, =0,

(3) sis an F(G)-structure on U iff s = (f,7) where 7 is a set of G-structures having disjoint
underlying sets whose union is U, and f is an F-structure on the set 7 (the assumption
G[0] = 0 is made in order to have a finite number of F(G)-structures on each U),

(4) s is an F'-structure on U iff s is an F-structure on the augmented set U U {x}, where x
denotes a point outside U.
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The passage from species to series satisfies the following properties:

— The transformation F' — F(z) commutes with combinatorial sums, products, substitutions,
and derivations:

(F+G)(z) = F(x)+ G(z),  (FG)(z)=F(z)G(z),
(FoG)(z) = F(G(xz)), F'(z) = dF(z)/da.

— The transformations F — F(z) and F — F(z) commute with combinatorial sums and
products but do not commute, in general, with substitutions and derivations:

e —

(F+G)()= F(z)+ Glz),  (F¥G)(2)= F(z)+Gla),
(F-G)(2) = F(2)-G(e), (F-G)(z) = F(z)G(a),
(FoG)a) # F(G(2)), (Fo@)(z) # F(G(2)),
F(2) # dP(a)/da, F(2) # dF(2)/da.

Consider an infinite sequence ¢ = (%1,1s,13,...) of distinct formal “weights” and, given a finite
set U, define an Fj-structure on U as being a couple s = (f,v) where f is an F-structure on U and
v:U — {1,2,3,...} is a function that assigns an arbitrary positive integer to each element of U.
Define the ¢-weight of the structure s by w(s) = [I,cv tou)-

Given a bijection §: U — V, define the transportation F;[5]: F;[U] — F[V] b

F[B](s) = (F[BI(f),vo B7).

Of course, the two series F(z) and Fj(z) can be associated to the weighted species F; and each
series is easily seen to be a symmetric function of the ¢;’s [11].

Let F' be any species and t = ({1,1s,13,...) be a countable sequence of formal variables related
to the variables x,, x4, x3,... by the equations
=+ E 45+ ..., (k-th power sum), k=1,2,3,....

The cycle index series Zr and the asymmetry index series I'p are defined by

Zp(21, 29, T3,...) = the expression of the symmetric function Fy(z) |y.—1
of t,,%5,13,... in terms of the variable z, x5, z3,...,
Zr(21,29,73,...) = the expression of the symmetric function Fy() |,.—
of t,,15,13,... in terms of the variable z, x5, z3,....

It turns out that the cycle index series Zp is the sum, over n, of the classical Pdlya’s cycle
index polynomials of the family of actions 5, x F[n] — F[n], of the symmetric group S,, n > 0.
Examples show that I'r contains informations independent of Zp (and vice versa). Using the theory
of symmetric functions and collecting monomials in z,, 5, z3, ..., both series can be written in the
“standard form”

G1 .02

Jananss )= LY b
1542, 37"' 01010_ '2020_2!'”

noneg 1’
n>0okn o on:

where the coefficients f, satisfy
fo e Nif f=Zp, while [ €Zif f=TpF.
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Species F F F F Zp I'r
singleton X Z z z Zq Zq
2
1
pair B, % z? 0 —(27 + 2?%) E(xf - z?%)
¢ E (2) : 1+ 3 S (1
se exp(x T ex — ex — —
b l-z b n>1 n b n>1 n
1 2 n—l‘rn n_lwn
subset P | exp(2z) | ——— |(1+2z)° | exp|?2 E( )P~ — | |exp| 2 Z(—l) —
(1-2) = n = n
1 1 1 1 1
list L
11—z 11—z 11—z 1—2 1—a
1 1 1
cycle C | In( ) - x $(n) 1 <7) E wn) ln<7)
11—z 11—z =on 11—z, = 11—z,
) 1 1 N 1 N 1—a,
permutation || 9 T2 nl:[ll_xn 1+z nl:[ll—xn i
TABLE 1. Basic species and their generating series. Here ¢(n) and p(n) respectively

denote the classical Euler and Mobius functions of n.

The notation o F n means that ¢ = (o

1 2

the number of parts of size ¢ in o.

The transformations ¥ — Zp and F* — I'r both commute with combinatorial sums, products,

substitutions and derivations:

(1)
(2)

Zryag = Zp+ Za,

I'pye =Tr +Tg,

Zr.a = ZrZa,

I'rg=TpTg,

,O0%, ..

Zpog = Lp 0 Za,

I'pog =Tpolg,

0Zp

Lp =
F 81‘17
ol'p

I'p =
F a$17

.,0") runs through the partitions of n, and o; is

where Zp o Zg (resp. I'r o I'¢) denotes the plethystic substitution of the series Zp and Zg (resp.

I'r and I'g). The plethysm Zp o Zg of two series Zp = f(x1,xa, 23, ..
is the series f(g1,92,9s, .-

.), where gp(z, 25, 23, ..

) and Zg = g(@1, 9, 3, . .
) = g($k7$2k7$3k7 .

) [2].

)

The series F(z), F(z), and F(z) can be computed from Zp and I'p by making use of the following

remarkable formulas:

(3)
(4)

F(z)= Zp(2,0,0,...) =T'p(z,0,0,...),

F(z)= Zp(z, 2% 2°,...),

F(z) =Tp(z,2?, 2%

The following explicit formulas are direct consequences of (1)—(4):

o

(F o G)(z) = Zp(G(2), G(z?), ..

(FoG)(z) = Zp(G(z), G(z?), ..

s
s

).

j*:’(x) = %ZF (z,2% 2°,...),
Ty
F(z) = &(l‘,xz,x?’, o).

8%1

The series F, F, ', Zp, and T'p have been computed for many elementary species. Table 1 gives

a short table.

Given any species F and any integer n € N we can extract a subspecies F,, C F by collecting all

those F-structures having an underlying cardinality n. If F = F,, we say that F is concentrated,
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n A n'Z, n'T 4

1 X T4 T4

2 E, z? + xy 3 — Ty

3 Fs 3+ 3x,25 + 223 T, — 33124 + 223

3 Cy 223 4 4az 229 — 2x3

4 E, z} + 62ixy + 82123 + 323 + 624 | 2} — 62725 + 82123 + 322 — 6y
4| Ef 22t + 162,25 + 622 2zt — 622 — 8z 75 + 122,
4| Eyo B, 3zt + 623z, + 922 + 62y 3zt — 6ziz, — 323 + 6y
4| ppe 627 + 182 627 — 1822 + 12z,

4 Cly 6z7 + 622 + 122, 6z7 — 623

4| EyoX? 1221 + 12a2 12z} — 1242

TABLE 2. Atomic species on less than 4 points and their index and asymmetry index series.

or lives, on the cardinality n. In the general situation, we obviously have the following canonical
decomposition:

(5) F=FK+F+F+---+F+....

The above canonical decomposition can be further refined by applying sums and products to
fundamental ‘building blocks’ called atomic species. We recall that the atomic species constitute a
countable set (working up to natural isomorphism)

A={X,Ey, E3,Cs, B4, Ef, Ey0 Ey, PP, Cy, By 0 X?,.. .}

and are defined as being the irreducible species with respect to both sums ‘+’ and products ‘- .

Moreover, A is a ‘graded set’
A=A UAUAU---UA, U---

where A, is the finite set consisting of all those atomic species that are concentrated on cardinality n.
A complete description of A, can be found in [5, 8, 15]. It is well known (by Yeh’s Theorem [8, 15])
that each F, in decomposition (5) can be written in a unique way as a polynomial (with coefficients
in N) in the atomic species that live on cardinalities < n. Stated differently, this means that we
have the following half-ring isomorphism

Species ~ N[[X, Ey, Es,Cs, E4, EX, Ey 0 Ey, PP, Cy, Ey 0 X2,...]] = N[[A]]

where Species denotes the half-ring of all the species (under the operations ‘4’ and ‘-’ and where
equality ‘=" means natural isomorphism).

ExaMmPLE. For the species Gr of simple graphs, we have the unique atomic decomposition:
Gr(X) =14 X 4+2F, +2X By 4+ 2F3 4+ 2X*Ey + 2X-F3 + 2F9-Fy + 2F20 By + Eg o X2+ 2E4 4+ - - - .

The universal ring V containing N[[.A]] is called the ring of virtual species. Every element in V
can be represented as F' — GG where F' and G are two species. The ring V is isomorphic to Z[[.A]]
and is closed for the combinatorial sums, products, substitutions and derivations.

Table 2 gives the index series and the asymmetry index series (polynomial, in fact) of each atomic
species on n < 4 points.
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2. General Explicit and Recursive Formulas

Consider the combinatorial equation A = X-E(A) which characterizes the species A of rooted
trees. We get in a purely mechanical way the following classical result [3]

A(w) = xeA(x),A(x) = T exp (Z M) ’A(x) = ¢ exp (Z(—l)"—lA(‘rn)) |

n>1 n n>1

Za = X exp (Z (Z;;)n) Ty =2 exp (E(_l)n_l@) ‘

n>1 n>1

The fundamental Otter-Robinson-Leroux [12, 14, 10] equation
A+ A% = A+ Ey(A),

between the species A of rooted trees and the species A of ordinary trees, gives the following results

Alw) = A@) — 5(A@)7,  Alx) = A(z) = 5(A@))* + $A(?) (Otter [12)),
A(z) = A) - %(A(x)f _ %A(wz) (Harary-Prins [3]),
Ta = Zp %(ZA)2 + %(ZA)2 (Robinson [14]), T'x =T, — %(rﬁ _ %(rA)2.

3. R-enriched rooted trees and R-enriched trees

The species Ar of R-enriched rooted trees (Labelle 1981) is recursively characterized by the
following combinatorial equation (i.e. natural isomorphism between species):

(6) Ap = X-R(Ap).

Depending on the choice of “enriching species” R, this definition includes : ordinary rooted trees
(R = E), cyclic rooted trees (R = 1+ C), binary rooted trees (R = 1 + E,), plane rooted trees
(R = L), oriented rooted trees (R = E?), and permutation rooted trees (R = 5).

A variant to the notion of R-enriched rooted tree is that of R-enriched tree. It is a tree in which
the set of “immediate neighbours” of each node is equipped with an R-structure. The species of
R-enriched rooted trees is denoted by Ag.

LEmMA 1 (LABELLE 1981). The species A}, = X?—XR of pointed R-enriched trees salisfies
r = XR(Ap),
where B’ = & and Ap = X R'(Ag/) is the species of R'-enriched rooted lrees.

LEMMA 2. The species Ag of R-enriched trees and the species Ar: of R'-enriched rooted trees
are related by the combinatorial equation

(7) .AR‘I‘A2/ IXR(AR/)+E2(AR/)

8



Enumerations related to automorphisms of rooted tree structures

THEOREM 1. From equations (6) and (7) we obtain the following ten formulas:

®) N An(z) = e R(An(2).
(9) Ap(z) = 2 Zp(An(2), An(2?), Ap(2®),...), Za, = ©121(Za,),

(10) An(@) = 2T p(Ap(2), Ax(z?), Ax(z?),...), T, = e:Tp(Tay),

(11) An(e) = 2 R(An(2)) ~ 5(Ap(2))",

(12) Anlw) = 2 Z5(Aae(2), A (o), A (2),..) = 5(Am(@))? + 5 Ame(a?),

(13) An(e) = 2T a(Au(2), A (o), Au(a®), ) = 5 (Au(2)) — 5 Ami(a?),

(1) Zay = 21 Z0(Za,)) = 5(Za)* + 5 Zag s Ly = 21T n(0a,0) = 500, = 5(Ta, )i

THEOREM 2. Lel Agp be the species of R-enriched rooted trees. Then, for every partition o =
(01,09,...) and every species I,

(15) COfoU ZAR = COefo Ty H (1 - %R/axl) (ZR)Zkv
s R k
(16) coell, Zp(an) = coefl, Zp- || (1 - %R/axl) (Zr)i",
s R k
(17) COQHO FAR = COefo Ty H (1 - M) (FR)Zkv
s R k
(18) Coeﬂo FF(AR) = (:()effg FF' H (1 — M) (FR)Zk.
o1 R k

THEOREM 3. Let Ag be the species of R-enriched trees. Then, for every partition o = (04,...),

wal—l,og,og,... Zf 01 7£ 07

(19) coeff, ZAR = 2(20%)_1[)02,04,... f0=0,=03="-",
0 otherwise,
w:1—1,02,03,... Zf 01 7£ 07

(20) coeff,, I1-'412 = 2<Ea2k)_lb§z,a4,... ZfO =01 =03=" ",
0 otherwise,
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where
$182ZR/8$f) . .
o = ffa Zgr- 1- —_— 0710 0"7
w coe R klzll < 07n) 0%, k( r/0%1);
0?Zg )03
b, = coeff, x | | (1 - w) 0Zg/0x1)7",
1k21 OZR/a-rl k( R/ 1)k
x132FR/8xf) ) )
wy = coeff, T' ||<1—7 Ol'r/0x1)5*
R o aFR/a-’El k( R/ 1)k
. xl('?ZFR/@xf) ) o o
bo —COfoU x k|>|1 <1— m k(@FR/Oa:l)k .

4. Examples

Every formula developed above can be implemented on symbolic computation systems such as
MAPLE, MATHEMATICA, MACSYMA, or DARWIN (Bergeron 1988). Examples of computation
are given in [7]. In the sequence, this paragraph contains concrete applications of some of our results
for particular choices of the enriching species R.

(R=1+C).

# of types of planes trees on n vertices =

1 n—1 2d 1 1
m Z Cb d d - §Cn—1 + §Xeven(n)c(n/2)—17

dl(n—1)

# of types of asymmetric planes trees on n vertices =

1 Z (n— 1) 2d 1 1 (n)
2(7L— 1) H d d QCn—l 2Xeven n C(n/2)—17

dl(n—1)

where Xeven is the characteristic function of the set of even numbers, ¢(n) and p(n) respectively
denote the classical Euler and M&bius functions of n, and ¢, = n-l}-l (2:) are the usual Catalan
numbers.

(R=E). In the case Ag = Ag = A (the species of rooted trees), (15) and (17) can be rewritten

as
_ 0 lf g1 = 07
coefl , 7, = { oo [liso(67" — kowgix~')  otherwise,
_ 0 lf g1 = 0,
coeff T'a = { o7 " 1o (07" — kopf7* ™) otherwise,

where ¢ = >y dog and 8 = 3= (—1)*/ D7 day.
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In the case Ag = Ag = A (the species of trees), (19) and (20

aa/gl
coeff, Z4,, = 2022 UQk)_lG@,@,...
0
/oy
coeff, T4, = 2(2021:) g 02 ..
0

where a, = coeff, Z4 and aF = coeff, I'4.

For a direct application of (16) and (18
where S is the species of permutations.
computations give

coeff, Zgnq = o7* H( — koot

k>2

coeff, T'gpa = 07 (052 —

where ¢ = >, dog and 0 = 3= (—1)*/ D" day.

(R=89).

the very compact form

:E a,x" = x

n>0

where ap = 0, a; = 1, and @,41 = (@1, + A2Gp_1 + - - -

(R=E - E,).

40'2052_1 -I— 40'2(0'2 — 1)052_2) H(HZ"

) can be rewritten as

if o1 #0,
if0=0y,=03="---,
otherwise,
if o1 #0,
if0=0,=03="--,
otherwise,

), consider the species of endofunctions End = S(A),
Taking FF = S and R =

E in (16) and (18

), a few

- ko—kelzk_l)7

k>3

The Ag-structures are called permutation rooted trees. In this case, formula (10) takes

1— Ag(2?)
1— Ag(z)’
+ @nal) - Xeven(n)@n/l

A topological tree (also called homeomorphically irreducible tree) is a tree that has

no node of degree 2. The species A,,, of topological trees can be expressed in terms of the species

A and A through the combinatorial equation

X X
Asep = A (1—|——X) x4 (T

This equation gives the formulas

z 22
Atap(2) A(rr)
e <L e
274\ 14+’ 142277
T 2
T (2) ( ey

2

x2<x z
2 A\ 142’ 142277

11

_EZA< $2 ’ $4 7"')7
2 14+ 2214 24
Y (52

T

2

x? xz?
. T R
>+ A<1+x2’1+m4’ )

(0 2)

— 1+$2,...)

)
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5. Related topics

THEOREM 4. The number of types of rooted plane trees with degree distribution v = (iy,1%s,13,...)
s
1

(n—1)/d
Sy S (e )

pesupp T d|p -1,

where supp V= {p |1, Z0}, d |7 iff Vp : d|1i,, and ¥ — fp = (1,050t — 1,..0).

THEOREM 5. The number of types of bicoloured plane trees with degree distributions
U= (11,79,13,...) and = (ju,J2,Js,-- ) 18

1 n/d (m—1)/d
TLPEZ Z ngb(d) (h/d,iz/d, : ) (.71/d7.]2/d7 . ‘7(jp - 1)/d, )

supp J d|p, 7]~

1 (n—1)/d m/d
1D DEEEED DO (il/d, infd, ..., (i, — 1)/d,.. ) (jl/d,j2/d, N )

pEsupp T d|p,i-T,,]

n+m-—1 n m
nm i1, 00, .. ) \J1,J2, 0]

where supp V= {p |1, Z0}, d |7 iff Vp : d|1i,, and 7 — fp = (150250 0ytp — 1,..0).

Let B = B(X,Y) be the species of rooted trees with internal point of sort X and leaves of sort
Y. This species is characterized by the functional equation

B=Y + X-E*(B)
where £* = E — 1 stands for species characteristic of nonempty sets.
THEOREM 6. The species A = A(X) and B = B(X,Y) are related by the following combinatorial
equation
B=Y -X+AX-E(Y - X))
where I/ = E(X) is the species of sels.
Let B = B(X,Y) be the species of trees with internal point of sort X and leaves of sort Y.

THEOREM 7. The species A = A(X) and B = B(X,Y') are related by the following combinatorial
equation

B=(Y-X)+ Es(Y - X)+AX-E(Y - X))
where I/ = E(X) is the species of sels and Ey = E5(X) is the species of sets of cardinality two.

THEOREM 8. Let U be an n-set, o be a permutation of U whose cyclic type is (01,0,,...,0,).
Then, for n > 2, the expected number of leaves in a random rooted tree (resp. in a random tree)
on U of which o is an automorphism is given respectively by

12
—Zk@'k (E dO'd - k) Aoy,...,00—1,....,00)

s k=1

d|k
1 n
—Zkak Edad -k gy, ox=1,...,0,)
Qo 1 d|k

12
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where a, (resp. a,) is the number of rooted trees (resp. trees) of which ¢ is an automorphism.

ExaMpLE. The expected number of leaves in a random rooted tree with ¢ as automorphism is
(1) n(n—1)""/n""t ~ n/eif o =1d, (well known),
(2) % + 2 if o is of type (n — 2,1,0,...,0),
(3) 97.89276140 if n = 186 and o is of type (6,1,12,0,0,0,4,3,2,0,0,6) (example given after a
few seconds, using Maple on a personal computer).
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