Sums of independent random variables and some combinatorial problems

V. Kolchin
Steklov Mathematical Institute

September 17, 1992

[summary by Philippe Robert]

1. Introduction

Consider n independent random variables uniformly distributed on the set \{1, 2, \ldots, N\} and denote by η_i the number of occurrences of i, $1 \leq i \leq N$. For any N-tuple of integers n_1, n_2, \ldots, n_N such that $\sum_1^n n_i = n$, then

$$P(\eta_1 = n_1, \ldots, \eta_N = n_N) = \frac{n!}{n_1! \cdots n_N!} N^n.$$

In the language of allocation of particles into cells (or balls into urns): n particles are put at random into N cells, η_i is the number of particles in the i-th cell.

If ξ_1, \ldots, ξ_N are independent Poisson random variables with parameter λ,

$$p_k = P(\xi_1 = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, \ldots$$

it is easy to check that

$$P(\eta_1 = n_1, \ldots, \eta_N = n_N) = P(\xi_1 = n_1, \ldots, \xi_N = n_n/\xi_1 + \cdots + \xi_N = n).$$

Let $\mu_r(n, N)$ be the number of cells with exactly r particles and $\eta(N) = \max\{\eta_1, \ldots, \eta_N\}$. If $\xi_1^{(r)}, \ldots, \xi_N^{(r)}$ are independent identically distributed (i.i.d.) random variables such that

$$P(\xi_1^{(r)} = k) = P(\xi_1 = k/\xi_1 \neq r),$$

and $\xi_1^{(r)}, \ldots, \xi_N^{(r)}$ i.i.d variables with

$$P(\xi_1^{(r)} = k) = P(\xi_1 = k/\xi_1 \leq r),$$

then using the relation (1), one gets

$$P(\eta(N) \leq r) = (P(\xi_1 \leq r))^N \frac{P(\xi_1^{(r)} + \cdots + \xi_N^{(r)} = n)}{P(\xi_1 + \cdots + \xi_N = n)},$$

$$P(\mu_r(n, N) = k) = \left(\frac{N}{k} \right) p_k (1 - p_r)^{N-k} \frac{P(\xi_1^{(r)} + \cdots + \xi_N^{(r)} = n - kr)}{P(\xi_1 + \cdots + \xi_N = n)}.$$

Definition 1. An N-tuple η_1, \ldots, η_N of random variables is a generalized scheme of allocating particles if there exist random variables ξ_1, \ldots, ξ_N such that (1) is satisfied.
I Combinatorial Models and Random Generation

Example. We consider the partitions of integers n into N non-negative integer summands, $n = n_1 + \cdots + n_N$. There are \(\binom{n-N+1}{N-1} \) such partitions; if they are equally likely, then $n = n_1 + \cdots + n_N$. If we take independent geometrically distributed random variables ξ_1, \ldots, ξ_N,
\[
P(\xi_1 = k) = p^k (1 - p), \quad k \in \mathbb{N}, \quad 0 < p < 1,
\]
then relation (1) is satisfied.

2. A general model of application of the generalized scheme of allocation

Let
- $\Gamma_n (R)$ be the set of all graphs with n vertices which satisfy some property R,
- $\Gamma_{n,N} (R)$ the set of the elements of $\Gamma (R)$ with N connected components,
- $\Gamma_{n,N} (R)$ the set of objects which consist of ordered collections on N components.

Take the uniform distribution on $\Gamma_{n,N} (R)$ and denote by η_1, \ldots, η_N the sizes of the components of a random element from $\Gamma_{n,N} (R)$. Denote by $a_n, a_{n,N}, a_{n,N}$ the respective cardinalities of $\Gamma_n (R), \Gamma_{n,N} (R), \Gamma_{n,N} (R)$, b_n the number of connected graphs in $\Gamma_n (R)$ and let ξ_1, \ldots, ξ_N be i.i.d. random variables such that
\[
P(\xi_1 = k) = \frac{b_n x^k}{k! B(x)}, \quad k \in \mathbb{N},
\]
where $B(x) = \sum_1^{+\infty} \frac{b_n x^k}{k!}$ and x is in the domain of convergence of this series. Then relation (1) is valid:
\[
a_{n,N} = \frac{\bar{a}_{n,N}}{N!} = \frac{1}{N!} \sum_{n_1 + \cdots + n_N = n} \frac{n!}{n_1! \cdots n_N!} b_1 \cdots b_{n_N},
\]

\[
P(\xi_1 + \cdots + \xi_N = n) = \sum_{n_1 + \cdots + n_N = n} \prod_{i=1}^{N} \frac{b_n x^{n_i}}{n_i! B(x)} = \frac{x^n}{B(x)^N} \sum_{n_1 + \cdots + n_N = n} \prod_{i=1}^{N} \frac{b_n}{n_i!},
\]
hence
\[
a_{n,N} = \frac{n! (B(x))^N}{N! x^n} P(\xi_1 + \cdots + \xi_N = n).
\]

Example. 1) Random permutations from S_n.
\[
a_n = n!, \quad b_n = (n - 1)!,
\]
\[
P(\xi_1 = k) = \frac{-x^k}{k \log (1 - x)}, \quad k \in \mathbb{N}, \quad 0 < x < 1.
\]

2) Random mappings from Σ_n.
\[
a_n = n^n, \quad b_n = (n - 1)! \sum_{k=0}^{n-1} \frac{n^k}{k!},
\]
\[
P(\xi_1 = k) = \frac{b_n x^k}{k! B(x)}, \quad 0 < x < 1.
\]

3) Random partitions from the set unordered partitions of the set $\{1, \ldots, n\}$.
\[
b_n = 1,
\]
\[
24
Sums of independent random variables and some combinatorial problems

\[
a_n = \sum_{N=1}^{n} a_{n,N} = \sum_{N=1}^{n} \frac{n!}{N! \sum_{n_1 + \cdots + n_N = n} \frac{1}{n_1! \cdots n_N!}},
\]

\[
P(\xi_1 = k) = \frac{x^k}{k!(e^x - 1)}, \quad k \in \mathbb{N}, \quad 0 < x < +\infty.
\]

4) Random forest from the set of all forests of \(N\) non-rooted trees with \(n\) total number of vertices.

\[
b_n = n^{n-2}, \quad B(x) = \sum_{1}^{\infty} \frac{n^{n-2}x^n}{n!}, \quad 0 < x < e^{-1},
\]

\[
P(\xi_1 = k) = \frac{k! - 2x^k}{k!B(x)}, \quad k \in \mathbb{N}.
\]

The complete investigation of \(a_{n,N}\) was carried out by Britikov in 1990,

\[
E(\xi_1) = \frac{1}{B(x)} \sum_{1}^{\infty} \frac{k! - 1x^k}{k!} = \frac{\theta(x)}{B(x)},
\]

\[
\sigma^2 E(\xi_1^2) = \frac{1}{B(x)} \sum_{1}^{\infty} \frac{k!x^k}{k!} = \frac{A(x)}{B(x)},
\]

where

\[
A(x) = \frac{\theta(x)}{1 - \theta(x)}, \quad B(x) = \frac{1}{2}(1 - (1 - \theta(x))^2)
\]

and \(\theta(x)\) is the root of \(x = xe^{-x}\) in the interval \([0, 1]\).

As a consequence of the local central limit theorem (see [1] p. 233),

\[
P(\xi_1 + \cdots + \xi_N = k) = \frac{1}{\sigma\sqrt{2\pi N}}e^{-u^2/2}(1 + o(1)),
\]

uniformly on the integers \(k\) such that \(u = \frac{(k - NE(\xi_1))}{\sigma\sqrt{N}}\) is in a finite interval.

The number of edges in the forest is \(T = n - N\), if \(\theta = \frac{2T}{n}\), then \(E(\xi_1) = \frac{n}{N}\),

\[
P(\xi_1 + \cdots + \xi_N = n) = \frac{1}{\sigma\sqrt{2\pi N}}(1 + o(1)).
\]

Finally if \(n, N \to +\infty\) such that \(\theta = \frac{2T}{n}\) is constant, then using (2) one gets

\[
a_{n,T} = \frac{n^{2T}\sqrt{1 - \theta}}{2T!(1 + o(1))}
\]

Bibliography