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Abstract

The main interest in this talk is the asymptotic behaviour of the number of heaps of size
n as n — oo. For special sequences of n, like {2%}; or {2¥ — 1}, the result is easily obtained
by resolving linear recurrences of first order. In order to obtain a general asymptotic formula,
we need to introduce some oscillating digital sums (depending on the digits of the binary
representation of n) whose behaviours can only be grasped by their summatory functions
which are more manageable.

1. Heap Recurrences

A (max-)heap is an array with elements a;, 1 < j < n, satisfying the path-monotone property: a; < a|;;2|,
Jj=2,3,...,n. It can be viewed as a binary tree where the value of each element is not smaller than that
of its children. A characteristic property of a heap, when viewed as a binary tree, is that at least one of the
two sub-trees of the root node is complete (i.e., it contains 2% — 1 elements for some non-negative integer k).
And this property recursively applies to each node. Given a heap H,, of size n and an additive cost function
© on heaps, we have the relation

(1) p[Hnl = 7[Hn] + ¢[HL] + ¢[HR],

for some cost function 7, where Hr and H g denote the left and right sub-heaps of the root node of H,, with
sizes L and R, respectively. Since at least one of Hr or Hg is complete, the relation (1) can be written into
a more precise form as follows. For k > 0 and {¢,},>1 a given non-negative sequence,

_ fororq + fororyy, 0 <G < 2P0
(2) f2k+] - t2’°+] +{ fzk—l + fj; if 9k-1 < _] < Qk’
fO = Oa
which we call the additive heap recurrence [3]. The associated generating functions are not very suggestive
for further investigations.
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n>1 E>1 E>1 2k=1<j<2k
where f(z) = En21 fn2™.
Let h, denote the total number of ways to rearrange the integers {1,2,...,n} into a heap. Then it is

obvious that h, satisfies the multiplicative heap recurrence:

9% 41 . e
h 2k—1_1 hzk—l_thk—l_l_j, 1f0§j < 2k 1,
2k4j = 2k i1
( 2:” ; )hzk_lhj, if k=1 < j < 2k,
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The sequence

{hntn>2 = 1,2,3,8,20,80,210,896, 3360, 19200, 79200, 506880, 2745600,
21964800, 108108000, 820019200, 5227622400, 48881664000...

is not in Sloane’s book. Let f, = log(n!/h,), then f, satisfies the additive heap recurrence. We require then
to find the general solution of (2).
Let us first fix some notations.

— n is a positive integer, and n = (bpbr_1...bg)2, where L = |log, n| and by = 1.
— nj = (1bj_1...bg)s for j = 1...L; ng = L.
— v(n) denotes the number of 1-digits in the binary representation of n.

Before solving (2), we note that there is another very similar type of recurrences [2]

L ' Gor-1 + Por-ryy, 1f0 <G <2k
®) Prras = Ty { o + &5, if 2571 < j <2k,

which occurs as the solution of the following equation

én =Tn + L (65 + bn—j),

when the sequence {Tn}nzo is strictly concave, namely 7,42 — 27,41 + 7, < 0 for all n > 0.
Recall that the backward difference is defined by Vf, = f, — fn—1. Let v, = Vf,, and 7, = Vt,, then

we obtain a slightly different recurrence

, : k-1
; _ Pok-145 0 S J < 2 )
Yokt = Tokyj + { ©; / 9k—1 <j< Qk’
together with ¢ = 0. Equivalently, this recurrence can be re-written as ¢, = @n, = Tn + Yn,_, =
Eogng Tnj-
2. Explicit Formula
To solve the heap recurrence explicitly, we first observe that when n = 2™*! — 1, we have a linear
recurrence: fom+1_1 = toam+1_1 + 2fam_1, which can be solved easily by iteration. From this, we can find the
solution for the sequences {2}, {2™ +2™~1 — 1}, ... . But this process does not lead readily to a general

solution. Hence, we begin with another way.
LEMMA 1. For n > 1, we have, for the solution of (2),

2 o (E IR o

1<G<L 0<5<

The two sums correspond, respectively, to the contribution of complete sub-heaps and non-complete
sub-heaps.
Similarly, the solution for the recurrence (3) is expressed by (¢g = 0)

g = 5 (It 5] ) 5

0<j<L 0<j<L

An immediate consequence of Lemma 1 is the following

LEMMA 2. Let t, > 0 and t, = O(n'=%) for fivred o > 0, then the solution f, of (1) satisfies f, ~ cn, as
n tends to infinity, for some constant c. Moreover, the constant ¢ is given by'

® o=

i>1

: i 1 :
!The series >_j>1 55 Is easily seen to be convergent.
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This result says that without loss of generality, we can, under the hypotheses of Lemma 2, consider only
the special sequence {2™ — 1},,, as far as the first asymptotic term is concerned.
For recurrence (3), constant ¢ is modified to be ¢ = Ej>0 755 /27, under the same conditions.

3. The Number of Heaps
Let f, = log(n!/hy), then f, satisfies (2) with ¢,, = logn. Lemma 2 gives the first-order estimate of f,

log(2i — 1 1
fa an%:n 210g2+Z—log 57| = 0.945755...n.
i>1 ji>1

Let o = 2log2+3 .5, 277 log(1—2779) be the coefficient. Using Lemma 1, we obtain the main result of this
talk. B

THEOREM 1.
hy ~ QQ\/ﬁP(log2 n)R(n) n"tE man-n (n — o0),
where Q =T[5, (1—-279) = 0.288788...,
22"’}

{u}
Pluy=2"71 T oo
0<i<u T+ {2¢77}
and v
1_2—j—1 {n/27}

izl

The two functions P and R are oscillating in nature. We can prove that, for all n > 1,

1< R(n)<exp|—Y 277 log(1—277) | =1.553544...
ji>1

and
0 < 2~ Tleganlteov(n) < p(log, n) < 2,

where ¢g = 1 —¢;/log2 = —0.253522... with ¢; = Ej>1 log(1 +277) = 0.868876....
To further investigate the properties of the two functions K and P, we observe that R is bounded for all
n. For P, let p(n) = log P(log, ), then

p(n) =v(n) = {logyn} — Y logy(1+ {n/2'}),

0<j<log, n

so that p oscillates between O(logn) and O(1). Since the first two terms on the right-hand side are “known”,
only the last sum needs special treatments. Set m(n) = 3 o< <ioq, »108(1 + {n/2'}). Then, for & not an
integer, we have the convergent Fourier series o

kax

log(l—l—{x})_QlogQ—l—l—Z S

k#£0

Ei(—4kni) — Ei(—2k7i) — log2).

For z an integer, the series converges to %log 2. Ei(z) is the exponential integral. Now summing all such
series for j = 1,2,..., L, we obtain

log 2 Ei(—4kwi) — Ei(—2k7i) — log 2 oi
w(n) = (2log2 - 1)L — Qg va(n) + Z ( ) Qk(ﬂri ) & Z g2hmni/2 ,
k#0 ! 1<j<L
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which is a mere translation of #(n) into trigonometric sums. Here vy(n) denotes the exponent of 2 in the
prime decomposition of n. Yet the formula still says something about the average order of 7(n):

1
— Y w(m)=(2log2 - 1)log,n+O(1)  (n — ),
n 1<m<n

which can be obtained by the following “Ergodic-type” result.

LEMMA 3. For any real continuous function o(x) on [0,1], define ¢(m) = Eo<j<log2m o({m/27}). We

have the asymptotic formula
Z é(m) = </ o(z) dm) log, n 4+ O(1) (n — o0).
1<m<n

In words, the lemma says that the average order of the function ¢(m) is asymptotically equal to log, n

times the mean value of the function ¢ on [0, 1].

4. The Cost of Constructing Heaps

Given a random permutation 7, of size n, let &, denote the number of exchanges used to construct a heap
from m, using Floyd’s algorithm. Then Efn satisfies the heap recurrence with ¢, = n~1! El<]<n |log, j| =
L+ (L+2)/n— 2Lt /n. Applying Lemma 1, we get the following refined result of Sprugnoli [3], who

considered only special sequences of n.

THEOREM 2. The expected number of exchanges EE,, used in Floyd’s heap construction algorithm satisfies

E¢, = con — |logyn| —v(n) 4+ 2wi(n) + wa(n) + O (loin) (n — 00),

where ¢cg = —2 + Ej>1j(2j —1)71 = 0.744033..., w1 (n) oscillates between O(logn) and O(1),

_ {n/2}
WI(n) - OS%;L 1+ {TL/Z]}’

and wy(n) = O(1) is given by
ﬂf—w+1

j+2
@(n) = _1_22 22J1+{n/2J Z{QJ} (2 — 2+ = 1)

ji>1

In particular, we have the inequalities %(y(n) —n/2E) < @wyi(n) < esv(n) for all n, so that
econ—L+0(1)<& <can—L+ (2e3—1)v(n)+ O(1),
for all n, where c3 = Ej>1(2j +1)71 = 0.764499... and 2¢3 — 1 = 0.528999...

By Lemma 3, the average order of the arithmetic function w;(n) is (1 — log2)log, n + O(1).

For the variance, we take

1 ) 1 .
t, = o |log, j]* — o Z log ]
1<5<n 1<5<n
oL L2 6 L 4 L 9L+3 L2 oL+2y 4L+l
= 6—— — — — — 4—— — —4—4+ — - — 4+ — — )
n n n n n? n? n? n? n? n?

With the help of Maple, we obtain the following result.
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THEOREM 3. The variance of the number of exchanges satisfies the asymptotic expression

Var(€n) = can + @a(n) + @a(n) + O (lg ) (n — o),

where cqg = 2 — Zj>1j2(2j —1)? = 0.261217..., ws(n) oscillates between O(logn) and O(1):

s s )
=2 3 ) T X W

0<j<L

and wa(n) = O(1):

.2 a3 a3 -2 . ,'+1 . a3 .2 .
_ j2 nYy 2 +4i+2) -T2+ 1)—-2---8(jF -2 1)
WWO_E:QJ_U2+§:{§} '
i1 iz

@ - 2@ - 17

The average order of ws(n) is (6log2 — 4) log, n + O(1).
Finally, from the probability generating function of &, derived in [1], it is not hard to show that the
distribution of &, is asymptotically Gaussian.

THEOREM 4. We have

§n—cam 1 /x _142 logn
Pr{ e <$}_m _ooe dt+ O NG (n — o0),

uniformly with respect to x.
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