On the number of heaps

Hsien-Kuei Hwang
LIX, École polytechnique
February 8, 1993

[summary by Hsien-Kuei Hwang]

Abstract

The main interest in this talk is the asymptotic behaviour of the number of heaps of size \(n \) as \(n \to \infty \). For special sequences of \(n \), like \(\{2^k\}_k \) or \(\{2^k - 1\}_k \), the result is easily obtained by resolving linear recurrences of first order. In order to obtain a general asymptotic formula, we need to introduce some oscillating digital sums (depending on the digits of the binary representation of \(n \)) whose behaviours can only be grasped by their summatory functions which are more manageable.

1. Heap Recurrences

A (max-)heap is an array with elements \(a_j, 1 \leq j \leq n \), satisfying the path-monotone property: \(a_j \leq a(j/2) \), \(j = 2, 3, \ldots, n \). It can be viewed as a binary tree where the value of each element is not smaller than that of its children. A characteristic property of a heap, when viewed as a binary tree, is that at least one of the two sub-trees of the root node is complete (i.e., it contains \(2^k - 1 \) elements for some non-negative integer \(k \)). And this property recursively applies to each node. Given a heap \(\mathcal{H}_n \) of size \(n \) and an additive cost function \(\varphi \) on heaps, we have the relation

\[
\varphi[\mathcal{H}_n] = \tau[\mathcal{H}_n] + \varphi[\mathcal{H}_L] + \varphi[\mathcal{H}_R],
\]

for some cost function \(\tau \), where \(\mathcal{H}_L \) and \(\mathcal{H}_R \) denote the left and right sub-heaps of the root node of \(\mathcal{H}_n \) with sizes \(L \) and \(R \), respectively. Since at least one of \(\mathcal{H}_L \) or \(\mathcal{H}_R \) is complete, the relation (1) can be written into a more precise form as follows. For \(k \geq 0 \) and \(\{t_n\}_{n \geq 1} \) a given non-negative sequence,

\[
\begin{cases}
 f_{2k} = t_{2k} + \left\{
 f_{2^{k-1} - 1} + f_{2^{k-1} + j}, & \text{if } 0 \leq j < 2^{k-1}, \\
 f_{2^{k-1}} + f_j, & \text{if } 2^{k-1} \leq j < 2^k,
 \end{cases}
\]

(2)

which we call the additive heap recurrence [3]. The associated generating functions are not very suggestive for further investigations.

\[
f(z) = \sum_{n \geq 1} t_n z^n + \frac{1}{1-z} \sum_{k \geq 1} f_{2^k} \left(z^{2^k-1} - z^{2^k} \right) + \sum_{k \geq 1} \left(z^{2^k} + z^{2^k-1} \right) \sum_{2^k \leq j < 2^{k+1}} f_j z^j,
\]

where \(f(z) = \sum_{n \geq 1} f_n z^n \).

Let \(h_n \) denote the total number of ways to rearrange the integers \(\{1, 2, \ldots, n\} \) into a heap. Then it is obvious that \(h_n \) satisfies the multiplicative heap recurrence:

\[
h_{2k+1} = \begin{cases}
 (2^k + j - 1)^{h_{2^k-1} h_{2^k-1} + j}, & \text{if } 0 \leq j < 2^{k-1}, \\
 (2^k - 1)^{h_{2^k-1} h_j}, & \text{if } 2^{k-1} \leq j < 2^k.
\end{cases}
\]

135
IV Analysis of Algorithms and Data Structures

The sequence
\[
\{h_n\}_{n \geq 2} = 1, 2, 3, 8, 20, 80, 210, 896, 3360, 19200, 79200, 506880, 2745600, \\
21964800, 108108000, 820019200, 5227622400, 48881664000...
\]

is not in Sloane’s book. Let \(f_n = \log(n!/h_n) \), then \(f_n \) satisfies the additive heap recurrence. We require then to find the general solution of (2).

Let us first fix some notations.
- \(n \) is a positive integer, and \(n = (b_L b_{L-1} \ldots b_1)_{b_2} \), where \(\lfloor \log_2 n \rfloor \) and \(b_L = 1 \).
- \(n_j = (b_{j-1} \ldots b_0)_{b_2} \) for \(j = 1 \ldots \); \(n_0 = 1 \).
- \(\nu(n) \) denotes the number of 1-digits in the binary representation of \(n \).

Before solving (2), we note that there is another very similar type of recurrences [2]

\[
\phi_{2^k+j} = \tau_{2^k+j} + \left\{ \begin{array}{ll}
\phi_{2^k-1} + \phi_{2^k-1+j}, & \text{if } 0 \leq j < 2^{k-1}; \\
\phi_{2^k} + \phi_j, & \text{if } 2^{k-1} \leq j < 2^k,
\end{array} \right.
\]

which occurs as the solution of the following equation

\[
\phi_n = \tau_n + \min_{1 \leq j \leq \lfloor \log_2 n \rfloor} \phi_{j + \nu(n - j)},
\]

when the sequence \(\{\tau_n\}_{n \geq 0} \) is strictly concave, namely \(\tau_{n+2} - 2\tau_{n+1} + \tau_n < 0 \) for all \(n \geq 0 \).

Recall that the backward difference is defined by \(\nabla f_n = f_n - f_{n-1} \). Let \(\varphi_n = \nabla f_n \), and \(\tau_n = \nabla t_n \), then we obtain a slightly different recurrence

\[
\varphi_{2^k+j} = \tau_{2^k+j} + \left\{ \begin{array}{ll}
\varphi_{2^k-1} + \varphi_{2^k-1+j}, & \text{if } 0 \leq j < 2^{k-1}; \\
\varphi_{2^k} + \varphi_j, & \text{if } 2^{k-1} \leq j < 2^k,
\end{array} \right.
\]

together with \(\varphi_0 = 0 \). Equivalently, this recurrence can be re-written as \(\varphi_n = \varphi_{n_L} = \tau_n + \varphi_{n_L-1} = \sum_{0 \leq j \leq L} \tau_{n_j} \).

2. Explicit Formula

To solve the heap recurrence explicitly, we first observe that when \(n = 2^{m+1} - 1 \), we have a linear recurrence: \(f_{2m+1} = f_{2m+1-1} + 2 f_{2m} \), which can be solved easily by iteration. From this, we can find the solution for the sequences \(\{2^m\}, \{2^m + 2^{m+1} - 1\}, \ldots \). But this process does not lead readily to a general solution. Hence, we begin with another way.

Lemma 1. For \(n \geq 1 \), we have, for the solution of (2),

\[
f_n = \sum_{1 \leq j \leq L} \left(\left\lfloor \frac{n}{2^j} \right\rfloor - \left\lfloor \frac{n}{2^j} \right\rfloor - 1 \right) t_{2^j-1} + \sum_{0 \leq j \leq L} t_{n_j}.
\]

The two sums correspond, respectively, to the contribution of complete sub-heaps and non-complete sub-heaps.

Similarly, the solution for the recurrence (3) is expressed by \(\phi_0 = 0 \)

\[
\phi_n = \sum_{0 \leq j \leq L} \left(\left\lfloor \frac{n}{2^j} \right\rfloor - \left\lfloor \frac{n}{2^j} \right\rfloor - 1 \right) \tau_{2^j} + \sum_{0 \leq j \leq L} \tau_{n_j}.
\]

An immediate consequence of Lemma 1 is the following

Lemma 2. Let \(t_n > 0 \) and \(t_n = O(n^{1-c}) \) for fixed \(c > 0 \), then the solution \(f_n \) of (1) satisfies \(f_n \sim cn \), as \(n \) tends to infinity, for some constant \(c \). Moreover, the constant \(c \) is given by

\[
c = \sum_{j \geq 1} \frac{t_{2^j-1}}{2^j}.
\]

\footnote{The series \(\sum_{j \geq 1} \frac{t_{2^j-1}}{2^j} \) is easily seen to be convergent.}
This result says that without loss of generality, we can, under the hypotheses of Lemma 2, consider only the special sequence \(\{2^m - 1\}_m \), as far as the first asymptotic term is concerned.

For recurrence (3), constant \(c \) is modified to be \(c = \sum_{j \geq 0} \tau_{2^j} / 2^j \), under the same conditions.

3. The Number of Heaps

Let \(f_n = \log(n! / h_n) \), then \(f_n \) satisfies (2) with \(t_n = \log n \). Lemma 2 gives the first-order estimate of \(f_n \)

\[
f_n \sim n \sum_{j \geq 1} \frac{\log(2^j - 1)}{2^j} = n \left(2 \log 2 + \sum_{j \geq 1} \frac{1}{2^j} \log(1 - 1/2^j) \right) = 0.945755... n.
\]

Let \(\alpha = 2 \log 2 + \sum_{j \geq 1} 2^{-j} \log(1 - 2^{-j}) \) be the coefficient. Using Lemma 1, we obtain the main result of this talk.

Theorem 1.

\[
h_n \sim 2Q \sqrt{2\pi} P(\log_2 n) R(n) n^{n+\frac{1}{2}} e^{-\alpha n - n} \quad (n \to \infty),
\]

where \(Q = \prod_{j \geq 1} (1 - 2^{-j}) = 0.288788... \),

\[
P(u) = 2^{2(u) - (u)} \prod_{0 \leq j \leq u} \frac{2^{(u-j)}}{1 + [2^{u-j}]},
\]

and

\[
R(n) = \prod_{j \geq 1} \left(\frac{1 - 2^{-j-1}}{1 - 2^{-j}} \right)^{\{n/2^j\}}.
\]

The two functions \(P \) and \(R \) are oscillating in nature. We can prove that, for all \(n \geq 1 \),

\[
1 \leq R(n) \leq \exp \left(- \sum_{j \geq 1} 2^{-j} \log(1 - 2^{-j}) \right) = 1.553544...
\]

and

\[
0 < 2^{-\{\log_2 n\} + c_0 \nu(n)} < P(\log_2 n) \leq 2,
\]

where \(c_0 = 1 - c_1 / \log 2 = -0.253522... \) with \(c_1 = \sum_{j \geq 1} \log(1 + 2^{-j}) = 0.868876... \).

To further investigate the properties of the two functions \(R \) and \(P \), we observe that \(R \) is bounded for all \(n \). For \(P \), let \(p(n) = \log P(\log_2 n) \), then

\[
p(n) = \nu(n) - \{\log_2 n\} - \sum_{0 \leq j \leq \log_2 n} \log_2(1 + \{n/2^j\}),
\]

so that \(p \) oscillates between \(O(\log n) \) and \(O(1) \). Since the first two terms on the right-hand side are “known”, only the last sum needs special treatments. Set \(\pi(n) = \sum_{0 \leq j \leq \log_2 n} \log(1 + \{n/2^j\}) \). Then, for \(x \) not an integer, we have the convergent Fourier series

\[
\log(1 + \{x\}) = 2 \log 2 - 1 + \sum_{k \neq 0} \frac{e^{2k\pi i x}}{2k\pi i} (\text{Ei}(-4k\pi i) - \text{Ei}(-2k\pi i) - \log 2).
\]

For \(x \) an integer, the series converges to \(\frac{1}{2} \log 2 \). \(\text{Ei}(z) \) is the exponential integral. Now summing all such series for \(j = 1, 2, \ldots, L \), we obtain

\[
\pi(n) = (2 \log 2 - 1) - \frac{\log 2}{2} v_2(n) + \sum_{k \neq 0} \frac{\text{Ei}(-4k\pi i) - \text{Ei}(-2k\pi i) - \log 2}{2k\pi i} \sum_{1 \leq j \leq L} e^{2k\pi i j / 2^j},
\]

137
IV Analysis of Algorithms and Data Structures

which is a mere translation of $\pi(n)$ into trigonometric sums. Here $v_2(n)$ denotes the exponent of 2 in the prime decomposition of n. Yet the formula still says something about the average order of $\pi(n)$:

$$\frac{1}{n} \sum_{1 \leq m \leq n} \pi(m) = (2 \log 2 - 1) \log_2 n + O(1) \quad (n \to \infty),$$

which can be obtained by the following “Ergodic-type” result.

\textbf{Theorem 3.} For any real continuous function $\varphi(x)$ on $[0,1]$, define $\phi(m) = \sum_{0 \leq j \leq \log_2 m} \varphi(\{m/2^j\})$. We have the asymptotic formula

$$\frac{1}{n} \sum_{1 \leq m \leq n} \phi(m) = \left(\int_0^1 \varphi(x) \, x \right) \log_2 n + O(1) \quad (n \to \infty).$$

In words, the lemma says that the average order of the function $\phi(m)$ is asymptotically equal to $\log_2 n$ times the mean value of the function φ on $[0,1]$.

. The Cost of Constructing Heaps

Given a random permutation π_n of size n, let ξ_n denote the number of exchanges used to construct a heap from π_n using Floyd’s algorithm. Then $E\xi_n$ satisfies the heap recurrence with $t_n = n^{-1} \sum_{1 \leq j \leq n} \log_2 j = 1 + (\log 2)/n - 2L^{1+1}/n$. Applying Lemma 1, we get the following refined result of Sprugnoli [3], who considered only special sequences of n.

\textbf{Theorem 2.} The expected number of exchanges $E\xi_n$ used in Floyd’s heap construction algorithm satisfies

$$E\xi_n = c_2 n - \left(\log_2 n \right) - \nu(n) + 2 \varpi_1(n) + \varpi_2(n) + O\left(\frac{\log n}{n} \right) \quad (n \to \infty),$$

where $c_2 = -2 + \sum_{j \geq 1} j(2^j - 1)^{-1} = 0.744033...$, $\varpi_1(n)$ oscillates between $O(\log n)$ and $O(1)$,

$$\varpi_1(n) = \sum_{0 \leq j \leq L} \frac{n/2^j}{1 + \{n/2^j\}},$$

and $\varpi_2(n) = O(1)$ is given by

$$\varpi_2(n) = 1 - \sum_{j \geq 1} \frac{j}{2^j - 1} + \sum_{j \geq 1} \frac{j^2}{2(1 + \{n/2^j\})} + \sum_{j \geq 1} \left\{ \frac{n}{2^j} \right\} \frac{j^2 - 2^j + 1}{(2^j - 1)(2^j + 1 - 1)}.$$

In particular, we have the inequalities $\frac{1}{2} (\nu(n) - n/2^L) \leq \varpi_1(n) \leq c_3 \nu(n)$ for all n, so that

$$c_2 n - \nu(n) + O(1) \leq \xi_n \leq c_2 n - (2c_3 - 1) \nu(n) + O(1),$$

for all n, where $c_3 = \sum_{j \geq 1} (2^j + 1)^{-1} = 0.764499...$ and $2c_3 - 1 = 0.528999...$

By Lemma 3, the average order of the arithmetic function $\varpi_1(n)$ is $(1 - \log 2) \log_2 n + O(1)$.

For the variance, we take

$$t_n = \frac{1}{n} \sum_{1 \leq j \leq n} \left(\log_2 j \right)^2 - \left(\frac{1}{n} \sum_{1 \leq j \leq n} \log_2 j \right)^2$$

$$= 6 \frac{2 L}{n} - \frac{2}{n} - 4 \frac{1}{n} - 4 \frac{1}{n^2} - 4 \frac{1}{n^2} + \frac{2 L + 3}{n^2} - \frac{2}{n^2} + \frac{2 L + 2}{n^2} - \frac{4 L + 1}{n^2}.$$
Theorem 3. The variance of the number of exchanges satisfies the asymptotic expression
\[
\text{Var}(\xi_n) = c_4 n + \varpi_3(n) + \varpi_4(n) + O \left(\frac{\log^2 n}{n} \right) \quad (n \to \infty),
\]
where \(c_4 = 2 - \sum_{j \geq 1} j^2 (2^j - 1)^2 = 0.261217 \ldots \), \(\varpi_3(n) \) oscillates between \(O(\log n) \) and \(O(1) \):
\[
\varpi_3(n) = -2 \sum_{0 \leq j \leq \log_2 n} \frac{\{n/2^j\}}{1 + \{n/2^j\}} + 4 \sum_{0 \leq j \leq \log_2 n} \frac{\{n/2^j\}}{(1 + \{n/2^j\})^2},
\]
and \(\varpi_4(n) = O(1) \):
\[
\varpi_4(n) = \sum_{j \geq 1} j^{2j} \left(\frac{n}{2^j} \right)^2 + \sum_{j \geq 1} j^{2j} \left(\frac{n}{2^j} \right)^2 \left(\frac{2^j (j^2 + 4j + 2) - 4^{j+1} (2j + 1) - 2 \cdots 8^j (j^2 - 2j - 1)}{(2j - 1)^2 (2j + 1 - 1)^2} \right).
\]

The average order of \(\varpi_3(n) \) is \((6 \log 2 - 4) \log_2 n + O(1) \).

Finally, from the probability generating function of \(\xi_n \) derived in [1], it is not hard to show that the distribution of \(\xi_n \) is asymptotically Gaussian.

Theorem 4. We have
\[
\Pr \left\{ \frac{\xi_n - c_2 n}{\sqrt{c_4 n}} < x \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2} t^2} \ dt + O \left(\frac{\log n}{\sqrt{n}} \right) \quad (n \to \infty),
\]
uniformly with respect to \(x \).

Bibliography

