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Abstract

A systematic approach to the random generation of labelled combinatorial objects is pre-
sented. It applies to structures that are decomposable, i.e., formally specifiable by grammars
involving union, product, set, sequence, and cycle constructions.

This work started with a question arising in statistical classification theory: How can one generate a
random “hierarchy”? In combinatorial terms, the generation problem simply amounts to drawing uniformly
at random a tree with internal nodes of degree at least 2 and with leaves (external nodes) labelled by
distinct integers, the number n of leaves being fixed. The need arises in statistics as one would like to
generate at random such hierarchies and compare their characteristics to hierarchical classifications obtained
from real-life data.

There are well-known methods for coping with this type of tree generation problems, the general strategy
relying on a divide-and-conquer principle: Generate the root with the suitable probability distribution, then
recursively generate the root subtrees. Several of the basic principles of this recursive top-down approach
have been formalized by Nijenhuis and Wilfin their reference book on combinatorial algorithms [7], by Hickey
and Cohen in the case of context-free languages [5], and under a fairly general setting by Greene within the
framework of labelled grammars [4]. This work is in many ways a systematization and a continuation of the
pioneering research of these authors.

The original article can be found in [2].

1. Combinatorial structures and constructions

We consider labelled objects. We start from the initial objects 1 that designates the “empty” structure
of size 0 that bears no label, and Z that generically designates a single labelled node of size 1. We operate
with the usual collection of labelled constructions,

(1) +, -, sequence(), set(), cycle().
We deal with the following structures, similar to the ones considered in [1].

DEFINITION 1. Let T = (T, T1,...,Tm) be an (m + 1)-tuple of classes of combinatorial structures. A
specification of T is a collection of m 4+ 1 equations, with the ith equation being of the form

(2) T =Y,(To, Th,....,Tm)
where ¥; is a term built from 1, Z, and the T}, using the standard constructions listed in (1).

We also say, for short, that the system (2) is a specification of Ty. A structure that admits a specification
is called decomposable. The framework of specifications resembles that of context-free grammars for formal
languages, but enriched with additional constructions.
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From the usual transformation rules on the exponential generating functions (egf), it is possible to derive
from (2) a set of equations which specify the corresponding egf. A consequence is that given a specification,
the corresponding enumerating sequences up to size n are all computable in @(n?) arithmetic operations.

2. Standard specifications

In this section, we consider reduction of specifications to standard form. The standard specifications
constitute the basis of the random generation procedures to be developed in the paper.

Besides the transformation into standard form, we need the pointing operator, defined as follows. Given
a class A of structures, the pointing of A is a class denoted ©A, ©A4 = |J._, (A, x [1..n]), where A, is
the subclass of objects in A having size n and [1..n] is the integer interval {1,2,... n}. In other words, an
object in the class ©A can be viewed as an object of A with the additional property that one of the labels,
corresponding to the field in [1..n], is distinguished. From the definition we have that C' = ©A implies
C, = nA,. Thus, the egfs are still computable by the added rule

C =04 — C(z) = ©A(z), where Of(z) = z - dizf(z)

Developments in this section are inspired by Joyal’s elegant theory [6] and by Greene’s work [4].

DEFINITION 2. Let T = (7,74, ...,Tm) be a tuple of classes of combinatorial structures. A standard
specification of T is a collection of m + 1 equations, the ith equation being of one of the forms

Li=11T=2,Ti=U;+U; Ty =U; - Up; O1; =U; - Uy,
where each U; € {1,2, Ty, ..., Tn, 0Ty, ...,0T,}.

THEOREM | (STANDARDIZATION ALGORITHM). Every decomposable structure admits an equivalent stan-
dard specification.

The proof is actually a conversion algorithm. For example, the transformation rule for the sequence
construction B = sequence(A)is B =14 A- B. As for the set construction B = set(A), the transformation
is ©B = B - ©A, this being understood as a fundamental combinatorial isomorphism: Pointing at a node
in a set individuates the component containing the node and the component becomes pointed; this leaves
aside a set of components, the non-marked ones. The cycle construction B = cycle(A) can be translated
into @B = C' - ©A, C = sequence(A). Similar combinatorial principle apply to the reduction of sequences,
sets, and cycles under cardinality constraints.

As an illustration, a standard form for hierarchies defined by H = 7 + set(H, card > 2) is

{H:Z+U1, U, =Us;-0H, U, =Us-0H, @UgIUg'GH}.

3. Basic generation schemes

From the preceding section, it is sufficient to exhibit generation routines for standard specifications. This
goal is achieved by means of a set of translation rules or “templates”, inspired by existing technology of
random generation [4, 5, 7]. A preprocessing stage furnishes, once and for all in time @(n?) and in storage
O(n) the enumerating sequences, up to size n, of structures intervening in a specification.

Given any class C, recall that ¢, = C),/n! is its normalized counting sequence, from now on assumed to
be available. We let gC' denote a random generation procedure relative to class C'. The general strategy is
based on the divide-and-congquer principle.

Ty. Initial structures. The generation procedures corresponding to 1 and Z are trivial.

T,. Unions. If C = A+ B, the probability that a C-structure of size n arises from A is simply a,/cy,.
The random generation procedure uses a variate U drawn uniformly from the real interval [0, 1] to effect the
choice.
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Ts. Products. If C = A - B, the probability that a C-structure of size n has an A-component of size k
and a B-component of size n — k is

k c,

<7l> Ap - Bnop _ ap -by_p
The random generation procedure results from this equation.
Ts. Pointing. Generating A and © A are clearly equivalent processes.

THEOREM 2 (SEQUENTIAL RANDOM GENERATION). The templates Tq, T1, T3, and T3 produce from any
standard specification Yo a collection of random generation routines g¥g. Fach routine of gXo uses precom-
puted tables consisting of O(n) integers; its worst case time complexity is of O(n?) arithmetic operations.

4. Boustrophedonic random generation

The standardization theory implies that all the complexity lies in the random generation of products.
More precisely, when measured in the number of while-loops executed, the cost of generating («, ) by the
sequential method is the size of the first component, |a|. In fact, a worst-case complexity of O(nlogn) can
be achieved for all decomposable structures. The principle is simply a boustrophedonic' search. Given a
product C = A - B, we let K be the random variable denoting the size of the A-component of a C-structure.
Amongst C-structures of size n, we have

Tn k= Pr{K =k} = M.

Cn
The idea is to appeal to a special search for the drawing of K with the probability distribution {m, x}}i_g-
Instead of the order of increasing values of k, we explore the possibilities of K in the boustrophedonic order

Tn,0, Tnn, Tn,l; Tnn-1,-- -,

that sweeps alternatively from left to right and back. The recurrence translating the cost admit O(nlogn)
solutions (see [3, Sec. 2.2]), leading to the following result.

THEOREM 3 (BOUSTROPHEDONIC RANDOM GENERATION). Any decomposable structure has a random
generation routine that uses precomputed tables of size O(n) and achieves O(nlogn) worst case time com-
plexity.

The purpose of the next sections is to come up with adequate specifications that permit to attain a
complexity of O(nlogn) involving low multiplicative factors by exploiting “natural” regularities present in
combinatorial structures. To algorithms designers, the situation resembles that of heapsort —which has
guaranteed O(nlogn) complexity— versus quicksort —which is O(nlogn) only on average but with small
constants—, so that quicksort is often preferred in practice.

5. The cost algebra of sequential generation

It is possible to examine the cost structure underlying the random generation procedures of the sequential
group. This can be achieved thanks to a cost algebra, developed in [2], and corresponding to that of
complexity descriptor in [1]. For example, it can be proved that the generation algorithm for binary plane
trees corresponding to the standard specification {B = Z + Uy; U; = B - B} has average case complexity
vB, = 3/an3/? + O(n).

'Boustrophedonic: turning like oxen in ploughing (Webster).
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6. The analysis of cost generating functions

The cost algebra we mentioned in the previous section attains its full dimension when we examine it in the
light of asymptotic properties of combinatorial structures. This means that orders of growth of coefficients
should be taken into account. Consideration of asymptotic properties of structures using the classical arsenal
of complex analysis does provide, in all cases of practical interest, valuable guidelines regarding the design
of generation algorithms.

Let’s see what happens on the family of non-plane trees, whose specification is A = Z - set(A). Tt
furnishes a first example where two random generation algorithms derived from combinatorially equivalent
specifications lead to rather different complexity behaviours. We make use of the general principles of the
standardization method, our starting point being the pair of combinatorially equivalent specifications

OA= A4+ (A - A)= A+ (A -OA).
Applying our cost algebra leads to the following theorem.

THEOREM 4 (NON PLANE TREES). (i). The random generation algorithm for labelled trees corresponding
to the standard specification ©A = A+ (OA - A) has average cost

yA, = \/gn?’/z + O(n).

(ii). The generation algorithm for labelled trees corresponding to the specification ©A = A+ (A-©A) has
average cost

1
vA, = §nlogn + O(n).

This result suggests optimization transformations. The pointed trees are much more numerous than the
basic trees, the ratio being © A, /A, = n. Accordingly, the mark tends to fall on larger portions of the tree,
thus leading to the complexity O(n logn).

In order to make this discussion precise, we introduce a formal definition.

DerFINITION 3. Given two generating functions F' and G, F' dominates GG, in symbols F' > G, if
Jn

— =0 as n — 4oo.
gn

The considerations regarding labelled trees then suggest a simple heuristic:
Big-endian heuristic. Given a standard specification Yg, reorganize all comparable pairs in
products each time A > B using the isomorphism transformation

(A-B)— (B-A).

This heuristic applied to the two specifications of non-plane trees leads to the “good choice” with an
O(nlogn) behaviour. A further optimization that this discussion suggests consists in obtaining, as much
as possible, specifications where products are imbalanced so as to take full advantage of the big-endian
heuristic. To that purpose, the © operator can be employed. For instance, let us re-examine the binary
trees, B = Z 4+ B - B. Consider the induced relation obtained by differentiation,

OB=72+0B -B+ B 0B.

Let K designate the size of the first component in B - B, and K’ denote the size of the first component in
B -OB. The expectation of K is n/2 while that of K’ turns out to be O(y/n), so that a global gain of order
close to O(y/n) is to be anticipated if the big endian heuristic is employed. This dictates a new heuristic:

Differential heuristic. Replace in specifications polynomial relations by differential relations.

36



A Calculus of Random Generation

For binary trees, the differential algorithm corresponding to the specification
©B=7+(B+B)-0B
leads to the average behaviour inlogn + O(n).

Thanks to these optimization transformations, all polynomial families of trees as well as functional graphs
can be generated in time asymptotic to %n logn. Furthermore, the class of iterative structures admits O(n)
random generation algorithms.

7. Numerical data

The generation method for decomposable structures has been implemented in the symbolic manipulation
system MAPLE by P. Zimmermann. The complete programme tests specifications for well-foundedness, puts
them in standard quadratic form, and compiles two sets of procedures from standard specifications: the
counting routines that implement the convolution recurrences, and the random generation routines based
on the templates. The whole set, in its current stage, represents some 1500 lines of Maple code. The
random generation procedures produced are in the Maple language itself, and they take advantage of the
multiprecision arithmetic facilities available in MAPLE.

The version of the Maple programme that was written furthermore compiles random generation routines
by automatically implementing a version of the big-endian heuristic based on “probing”. As an outcome,
all our eleven reference structures are generated in time between 2 and 9 seconds on a machine of 20 Mips
for size n = 400. Gains involving a factor of about 10 for n = 400 result from optimizations dictated by the
cost calculus.

8. Unlabelled structures

Many important structures of computer science and combinatorics are unlabelled.

Work currently under redaction shows that the framework presented here extends to unlabelled combina-
torial structures. (The treatment is only made more complex because of the occurrence of Pélya operators.)
As a result: (i) all unlabelled decomposable structures including context-free languages and term trees of
symbolic computation can be generated in worst-case time O(nlogn); (i¢). Wilf’s RANRUT Algorithm [8] has
expected case complexity which is ~ %n logn.
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