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Abstract

This presentation proposes a transfer principle from the continuous to the discrete in the
context of the average case analysis of the Euclidean G¢D algorithm. By this principle, it is
possible to transfer a central limit theorem on the denominators of convergents associated
with continued fraction expansions of real numbers to rational fractions naturally associated
to the Euclidean GcD algorithm. There results an estimation of small and large deviation
probabilities for the Euclidean algorithm. Ergodic theory permits to place these results in
a wider perspective.

Bibliographical data

The history of the analysis of the Euclidean algorithm till about 1980 appears in Knuth’s book “Seminu-
merical Algorithms” [7].
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The worst case of the algorithm on fractions . with p,q bounded by N is about log, N (with ¢ =

(14 +/5)/2) and is related to Fibonacci numbers, as discovered by Lamé in 1845.
The average case is asymptotic to
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as was discovered independently by Dixon [3] and Heilbronn [4] near 1970. Asymptotic refinements of the
average case formula have been given by Porter and Knuth, see [7].

While Heilbronn’s approach is number—theoretic, Dixon’s proof is based on properties of continued fraction
expansions of real numbers. It had been conjectured by Gauf} that the kth iterate in the continued fraction
expansion of a random uniform z € [0, 1] has a distribution that tends to the so—called Gauf law with density
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As Gauf} himself said: “Tam complicate evadunt ut nulla spes superesse videatur”.

Gaufl’s problem was only solved by Paul Lévy in 1929, with successive refinements introduced by Kuzmin
and Wirsing who characterized the speed of convergence (as a decaying exponential), and eventually by
Babenko who gave an exact spectral decomposition [1] of the distribution of the kth iterate as an infinite
sum of decreasing exponentials.

The existence of a limit distribution can be connected to ergodic theory as was noted after Khinchin’s
work [6] and part of the talk followed this thread. In this context, Gauf’s law is nothing but the invariant
measure associated with the continued fraction transformation:
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In another direction, it had been proved by Philipp [10] using probabilistic methods that the logarithm
of the denominator of a random « € [0, 1] follows a Gaussian law in the limit. Dixon and Daudé make use
of this result by transferring properties of the continuous model of continued fractions to the discrete model
of rational fractions that underlies the Euclidean algorithm.

Daudé [2, Chap. 1] establishes in this context two results: one that indicates that the probability of “small
deviations” is large enough (this resembles a partial limit density estimate for the Euclidean algorithm), an-
other dual one that the probability of “large deviations” is small. Daudé’s thesis also contains corresponding
results for the variant of the Euclidean algorithm based on the centered quotient-remainder transformation.

Recently, these results have been made more precise by Hensley [5] who established a central limit theorem
for the number of steps of the Euclidean algorithm. Hensley’s approach depends on functional properties of
an operator G, closely associated with continued fractions:
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The functional analysis approach to these problems itself takes its roots in earlier works of Wirsing [12],
Babenko [1] and Mayer [8, 9].

The techniques of the talk prove useful for the average case analysis of a lattice reduction algorithm in
dimension 2 also due to Gauss, see [2, Chap. 2] and [11].
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