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Abstract

We study different aspects of the enumeration of standard paths in the poset of compo-
sitions of integers. We show that many problems similar to those considered in the poset of
partitions of an integer become simpler in this context. We give many explicit formulas for
generating functions of standard paths in this poset and interesting subposets.

1. Standard Young Tableaux and Paths in the Young Lattice

A partition of a positive integer n is a sequence of integers A; > Ay > -+ > Ap > 0 such that >, A; = n.
We write A F n to express this fact, and we say that k is the height h(X) of A. The Ferrer diagram of a
partition is the set of points (i, j) € Z? such that 1 < j < A;.

A Young standard tableau T is an injective labelling of a Ferrer diagram by the elements of {1,2,... n},
such that 7'(4,j) < T(i+1,j), for 1 <i< k, and T(4,5) < T(¢,j+ 1), for 1 < j < A;. We further say that
A is the shape of the tableau 7. For a given A, the number f) of tableaux of shape A is given by the hook
length formula

n!
B Hc hc ’

where ¢ = ¢(4, j) runs over the set of points in the diagram of A, and
he= X+ #0| N 2 i) —i—j+1.

Other classical results in this context are >y, f? =nl, and }_,, . fn = coeff of Z_T in es+e’/2,
We are interested in the enumeration of tableaux of height bounded by some integer h. In other words,
we want to compute the numbers
th(n) = Z f)\a

B(A)<h

I

and the series

yp(z) = Z th(n)a™.

n>0

Closed formulas for ¢5(n) are known for n < 5. Regev [6] has given asymptotic values for these numbers.
The series yp(z) are differentiably finite (see Stanley [7]) (i.e. the t5(n)’s are P-recursive). This means that
the t5(n)’s satisfy a recurrence of the form

m

> pe(n)ta(n — k) =0,

k=0

for some polynomials p;(n) and some integer m.
CONJECTURE 1. [I]
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(1) the tp(n)’s satisfy a recurrence of the form

[h/2]+1
(1) > pe(n)ta(n—k) =0,
k=0
for some polynomials pr(n) each of degree < |h/2],
(2) the coefficient of tp(n) in (1) is
Lh/2]
po(n) = [T (n+k(h = k),
k=1

(3) for odd h, the coefficient of th(n — 1) in (1) is
—p1(n) = npo(n) — (n — Lpo(n — 1),
(4) for h =T we have

(n+6)(n+10)(n + 12)t7(n) =(4n> + 78n? + 424n + 495)t7(n — 1)
+ (n — 1)(34n* 4 280n + 305)t7(n — 2)
—(n—1)(n —2)(76n + 290)t7(n — 3)
—105(n — 1)(n —2)(n — 3)tz(n — 4).

2. Compositions of n

Let us recall that a composition P is a sequence of positive integers (p;)i=1, k. The p;’s are called parts
of the composition and &, the number of parts, is said to be the length £(P) of P and is denoted by £(P).
The weight |P| of a composition P is the sum of its parts

k
|P| = Zpi =n.
i=1

We often say that P is a composition of n and write P |= n. The partition obtained by reordering the parts
of a composition P is denoted A(P).

We say that a composition @ covers a composition P, if ) is obtained either by adding 1 to a part of P,
or by adding a part of size 1 to P. The partial order obtained by transitive closure of this covering relation
is denoted

P<R,

and the poset thus obtained is denoted I'. For partitions, the analogous order corresponds to the inclusion
of Ferrer diagrams. The poset of partitions is denoted A and the function A : ' — A, defined above, is a
morphism of (graded) posets.

Our first objective will be the enumeration, with some parameters, of “standard” (up-going) paths starting
with the composition (1) and finishing at P |= n. We also consider this enumeration problem for subposets
obtained by restrictions on the compositions. More precisely, a standard path is a sequence of compositions

(I)=PL<Py<P3<---<P,=P,

where P; = i. Such a path P is said to have length n, and we denote it |P|. A standard path P = P; <
Py < P3 < -+ < P, with endpoint P can be encoded by a permutation (P) in the following way. We form
a sequence of words

(1) =wi,wa,...,wy, = o(P)
where w; is obtained from w;_; by insertion of 7 in position j = p(li) + pgi) + -+ pgj) if P; is obtained from
FP;_; by adding 1 to the k-th part of F;_;, in position j = p(li) + pgi) + -+ pgf) — 1 if P; is obtained by
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adding a part of size 1 to F;_1, just after a part of size > 1, and in first position if the new part is added at
the beginning of F;_;.
For example, to the path

P=1)<(11)=<21)=<(L21)<(2,21)<(231)<(2,4,1) <(2,4,2) < (2,4,1,2)
there corresponds the sequence of words
1,21,231,4231,45231,452361, 4523671, 45236718,452369718

hence o(P) = 452369718.

Let us denote P(w) the composition encoding the descents of a permutation w

P((.d) = (p1:p2: <. ;Pk)
This means that the set {i | w; > w;y1} coincides with the set {p1,p1 + p2,p1 + p2 + p3,...}. Then
P(e(P)) =P, and  o(P(w)) =w,

ifw = o(P) for some standard path P. In order to unfold our study, we will also need the following alternative
encoding of a standard path. First, we may formally define the diagram of a composition P to be the set of
points (i, j) € Z? such that 1 < j < p;. It is convenient to replace the node (i, j) by the square with corners
(i—1,7—1), (i—1,j), (¢, — 1) and (¢,7). For a standard path ending at P, we label the squares of the
diagram of P in the order of their apparition in the path. Thus the step

(2,3,1,5) < (2,4,1,5)

is encoded by the addition of the box labelled 12 in Figure 3.

The labelled diagram obtained in this manner is called the tableau of the path, and the underlying diagram
(or composition) of a tableau is called its shape. This representation suggests that the number of parts of
the endpoint P of a standard path P should be called the width of the path, the largest part the height of
the path, and P the shape of the path.
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P of length 4
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3. Standard paths in the poset I

Let T';, 1,4 be the set of compositions of length n with k parts of size 1 and d parts of size > 1. Let v, 14
be the number of standard paths with endpoint in I',, ;4. We would like to derive an explicit expression for
the generating function

F(u,v,m)zz Z’ynykydukvd %

n>1 \ kj

Examination of the different cases involved in the last step of a standard path gives the following recurrence
Ynt1k,d =AY kd+ (1 + )vnk-1,a+ (L + k)Yn k+1,d-1,

with initial conditions v, ,0 = 1 and 9,01 = 1, for n > 2. This recurrence translates into a partial
differential equation for F'

0 0 0
(2) gF(u, v, )= (1+ u)U%F(u, v, &)+ uF (u,v,2) + Ua—uF(u, v, L),
with initial conditions F'(u, 0, ) = exp(uz), and (%F(O’ v, m))|v:0 = exp(z) — 1 —x. It is straightforward to
verify (with the help of Maple) that the following function satisfies equation (2) with the prescribed initial
conditions

aZ

exp(z) ((1 + u) sin(%x) —a cos(%a:))2 ’

(3) Fu,v,z)=

where
a=+2v—(14+u)?

The first few terms of this series in z are

22 23 24
1+ur+ (v+ uz)y +(v+4vu+ u?’)? + (v 4402+ 6vu+ 1vu? + 'u4)z
5
+(v + 140v? 4+ 34 uv? + Svu + 23 u?v 4 26 vu® + u5)'§—' 4+
It is not clear how one can come up with an expression such as (3) for the desired generating function. The
following combinatorial argument describes one way of finding this expression.

4. Increasing binary trees

First, we describe a classical bijection between permutations and increasing binary trees. For any word
w = wiws - -w, on n > 1 distinct letters (in an ordered alphabet), we recursively define the binary tree
T(w) to be

T(w) = / \
7(u) 7(v)

where ¢ = min(w) is the minimum letter in w, u and v are the factors of w such that w = uav, 7(u) is the
left branch of the tree, and 7(v) is the right branch. If one of these factors is the empty word, we omit the
corresponding branch. Hence for the permutation w = 521436 the corresponding tree is

19



I Combinatorial Models and Random Generation
/N
NN
) 4 6

7(524136) =

It is clear that the labels in such a tree will be in increasing order on any path going from the root to a leaf.
Since 7 is a bijection, there are n! increasing trees with labels {1,2,... n}.

We can characterize the increasing trees 7' = 7(o(P)) corresponding to the permutation encoding o(P) of
standard paths P by the condition that for any node v appearing in the left subtree of another node, when
v has two sons the label of its left son is inferior to that of the right one.

The smallest increasing tree that is excluded with this condition is

1

\2
O

Using this characterization and the results of [5], it is easy to check that F' = F'(2) satisfies the following
system of differential equations

(4) F'=F(1+G), F(0) =1, G'=1+2G+G*/2, G(0)=0.

This is how we first obtained the generating function (3) (with u = v = 1). A finer study of the properties
of these trees allows for the generalization of (4) accounting for the parameters u and v. We obtain

(5) F'=F(1+G), F(u,v,0) =1, G'=v+(14+uw)G+G*/2, G(u,v,0)=0,

where F'(z) = %F(u, v, ).

The particular form of system (5) underlines that F' is a constructible differentially algebraic series in the
sense of [2]. Recall that a series y = y(x), with coefficients in K, is said to be constructible differentially
algebraic (CDF for short) if for some k > 1, there exist k series yi,...,yx with y; = y and polynomials
Py, ..., Py (with coefficients in K) such that

i Pi(yi, .-, yk)

Pe(yr, - ur)

Y

The class of CDF series contains polynomials, algebraic series, and the series expansion around 0 of the usual
functions such as e, log(1l + ), or the trigonometric functions and their inverse. It is closed for the usual
operations on series: sum, product, composition, derivation, integration, inversion (1/y(z)), and inversion
for composition. However it is not closed under Hadamard product (term-wise product). All CDF series
are analytic around 0, hence )", n!z” is not CDF which shows that this class does not contain the class of
D-finite series (see [7, 8]). The series expansion around 0 of 1/ cos(z) is not D-finite, but is CDF. Thus the
class CDF is not contained in the class of D-finite series.
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5. Standard paths of bounded height

In the sequel of this paper, we denote ['(z) the subposet of compositions of width < k, and '®) the
subposet of compositions of height < k.

The story is very similar for the poset I'?). Let, once again, F( ) be the set of compositions with k& parts
of size 1 and d parts of size 2. Clearly this implies that the length of the path is n = k + 2d. As before, let

( C)l be the number of standard paths with endpoint in Fgc ()i The basic recurrence in this case is

(6) Ten= (k.
We could proceed as in the derivation of (3) to deduce from (6) that

F(Z)(u, v) = i 5
(u sin(%) -3 cos(%))

where 3 = v/2v — u2.

For a general k, the study of I'®*) becomes quite intricate. We do not know at this time what are the
generating functions for the enumeration of standard paths in those instances. In the case k = 3 the first
terms of the corresponding generating function are

2 3 4 5 6 7 8 9

1 Pl 9227 147 2 —+1 —
+ x4+ —1—63 + —|—985 +5 ol —|—30867 + 08908'+ 573989'

6. Standard paths of given width
The (ordinary) generating functions for the number of paths of width at most 2 is the rational function

2+ 23
o= =0
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