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Abstract

Various problems related to the binary expansion of integers are investigated. The Thue-
Morse sequence, which gives the parity of the number of 1’s in the binary expansion of an
integer, appears in several identities and constants. We illustrate techniques, based on
Dirichlet series or elementary methods, used to obtain such formulae.

The starting point is the sum s3(n) of the bits of the binary representation of n and the Thue-Morse
sequence, ¢(n) = (—1)*2(?). The next three relations will be our leading thread;
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All these examples relate to the domain of automatic sequences whose prototype is the Thue-Morse sequence.
Such sequences are at the frontier between the theory of formal languages and the theory of numbers. Their
definitions are often simple but the techniques often involve Dirichlet series and asymptotic analysis.

1. Series

Formula 1 is excerpted from the Putnam competition (1981) and was generalized by Shallit [12] into
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where sp(n) is the sum of the digits of n for radix B. We show an example which extends this result. We
take the sequence u(n) which counts the number of blocks 11 in the binary expansion of n. For instance,
since 14 = 1110, then u(14) = 2. Introducing an appropriate function f(z), which will be defined later, we

consider the two series

+o0 +oo
> u(n) f2n+1), > u(@n+1)f(2n+1).
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The only reasonable idea we can make use of is to split these series according to the parity of the integer n:
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+oo0 oo I
Su@n+1)f2n+1)=> u(dn+1) fAn + 1)+ > _ u(4n+3) f(4n +3).

But the sequence u(n) satisfies the relations
u(n) = u(2n) = u(4dn + 1),
u(dn+3) =u(2n+ 1)+ 1.

By subtraction, we obtain

+oo +oo
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and eventually
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We apply this formula with
1 1
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and we get
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The behaviour of the Riemann and Hurwitz zeta functions near 1 are known [13, §13.21]:
1
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and the local analysis of the terms in Formula 5 in the neighbourhood of 1 gives
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According to Gauss [13, §12.16] [8, p. 94], we have
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The use of the function
1 1
f(n)_ E_ (n+1)3

is more than a trick. The crux of the matter is that f(z) is an eigenvector of operator T,
Tg(z) =g(x)— Y g(Bz+j).
0<j<B

More precisely an eigenvector g(z) such that the series ) g(n) converges and g(z) ~ 2" for z in a neigh-
bourhood of 0 is essentially f(z).

2. Infinite products

Shallit [12] proved Formula 2 by real analysis and Allouche and Cohen [3, 1] gave another proof by means
of Dirichlet series. The logarithm of the infinite product is
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Therefore 1t is natural to introduce the Dirichlet series
+oo
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Splitting the sum according to the parity of n yields

(+3) - E it (- ain)

n=0
and by binomial expansion
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The infinite functional equation

fo =3k (FL ) g6,

k=1

permits us to extend function f(s) throughout the entire complex plane. Moreover
+oo 1
FO)= 55 Fk)
k=1

and that is the quantity we are looking for. The function



III  Asymptotic Analysis

satisfies
= o) o) = (14 55) 1)
923 g\s) = 923 S
and can be extended in the same manner as f(s). The only difference lies in the fact that g(0) = —1 and
this gives

) =-1,

hence Formula 2.
Another method to obtain Formula 2 is to apply a greedy algorithm which computes sequentially the
exponents a(n) = %1 such that

ONORENORNEED

The partial products approach the limit alternating from below or above, as do the partial sums of the series
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As a result the two sequences « and € are equal.
More generally, for each pattern w there exists a rational function g(n) such that

H g(n)ﬁ(") — Q

2 )
n>0

where 3(n) equals 4+1 or —1 according to the parity of the number of w in the binary expansion of n. For
example,

Tg)((n—i—l)(éln—i—l)) T2

if B(n) = (—1)“(") is the Rudin-Shapiro sequence associated to pattern w = 11.
In the same vein, the Flajolet product [6]
2n e(n)
H <2 n+ 1)

n>0

is not known. We point out that the rational fraction 2n/(2n + 1) is related to pattern w = 01.

3. Newman-Coquet sequence

This is our last example. The first few terms of the Thue-Morse sequence €(n) are (with + = +1 and
—-=-1)
+--+-++--++-+--+-4++-+-—-—++-

and the first few terms of the subsequence ¢(3 n), the Newman-Coquet sequence, are

tH+4+++++—+++++ -+ -+ .

The abundance of + is startling [10] and it is natural to wonder about the sign of

SN = Z e(3n).

n<N

92



Series and infinite products related to binary expansion of integers

In fact there are asymptotically as many minuses as there are pluses and sy /N is o(N). Newman and
Slater [11] have showed that sy is of the same order of magnitude as N%, with & = log3/log4, though not
admitting an asymptotic equivalent C N®. Next Coquet [5, 7] proved that

o log
Ze(3n)x:oor F <log4> +0(1),

n<x

where F' is 1-periodic, continuous but nowhere differentiable.
By a greedy algorithm, every sequence of 1 can be written as an infinite product

[Tbowm),

where by (n) is +1 or —1 according to the parity of the number of w in the binary expansion of n [9]. For
the Coquet sequence, one obtains [2]

6(3 n) = 5111(71)511011(71) e '511(01)11(71) e
The rarity of the blocks 11(01)*1 explains the excess of + in the sequence.
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