13

Function Composition and Automatic Average-Case
Analysis

Paul Zimmermann

INRIA, Rocquencourt

[summary by Paul Zimmermann]

This talk introduces the composition of functions defined over extended context-free languages.
It is shown that this composition is automatically computable. It enables the automatic analysis
of complex problems with small input descriptions, for example repeated differentiation or
iterated automata on regular languages.

In the field of automatic complexity analysis, the length of the problem description is often a
limitation: writing a long specification program is often a difficult error prone process. Thus one
needs some powerful constructs to describe algorithms, with the necessary constraint that these
constructs allow an automatic analysis.

One is interested here in the average case analysis of programs including some compositions of
functions. None of the existing systems, including METRIC [5], COMPLEXA [10] or the version of
Lambda-Upsilon-Omega (Ay{2) described in [2], is able to analyze the composition of functions.
The main reason may be the following: in these systems, the analysis of statements like f(z)
relies on the fact that all required data types are defined, either implicitly like in METRIC and
CoMPLEXA where all data structures are lists, or explicitly like in Lambda-Upsilon-Omega. But in
the statement f(g(y)), the difficulty is to get a formal description of the object g(y), which is not
known a priori.

As an example, suppose one has written a function diff performing the differentiation of sym-
bolic expressions with respect to one variable, and now one would like to analyze the two-fold

differentiation by just defining
def

diff2(c) " diff (diff (e))
instead of having to write the entire body of the function diff2. P. Zimmermann shows that this
shorthand is possible: he defines a class of programs including function compositions, such that
every program can be automatically expanded into another one without any composition, and
equivalent to the original one in what concerns complexity analysis. This result allows us to define
and to analyze large problems by short description programs.

1 A class of programs with composition

This section introduces the composition of functions in the Apr language (Algorithm Description
Language), especially designed for automatic average case analysis in the Lambda-Upsilon-Omega
system [1, 2, 7]. The following is an ADL program performing the differentiation of symbolic
expressions.

69

70 Part II. Generating Functions and Symbolic Computation

type expression = zero | one | x
| plus(expression,expression)
| times(expression,expression);
plus,times,zero,one,x = atom(1);

function diff(e : expression) : expression;

begin
case e of
plus(el,e2) . plus(diff(el),diff(e2));
times(el,e2) : plus(times(diff(el),copy(e2)),
times(copy(el),diff(e2)));
Z€ero . Ze€ro;
one : Z€ro;
X : one
end;
end;

where the function copy, which simply makes a carbon copy of one expression, is also defined in
the same manner. To define the complexity measure as the number of atoms in the output of diff,
it suffices to define the cost of each atom as 1:

measure plus,times,zero,one,x : 1;

If one analyzes the diff function in the Lambda-Upsilon-Omega system, one gets the following
average cost for expressions of size n:

rdiff, = % 203/ 4 O(n).

Now one allows the use of the composition in ADL programs, that is statements of the form f(g(y))
where f and g are two functions defined in the program, and y is a local variable. For example,
the second order differentiation is defined as follows

function diff2(e : expression) : expression;

begin

diff(diff(e))

end;
Definition 1 The composition graph associated to an ADL program is the graph whose vertices
are the function names, and for each composition f(g(...)) in the body of a function h, there is an
arrow from h to all functions on which f and g depend (the relation “depends on” is the reflexive
and transitive closure of the relation “has in its body”).

Theorem 1 If the composition graph of an ADL program is acyclic, then the program translates
into an equivalent program without composition.

The proof of this theorem involves the definition of a way of expanding the composition, the
expansion process. This process necessarily terminates when the composition graph is acyclic.

As the average case analysis of ADL programs without composition is already known to be automatic
[2, 7], the above theorem implies directly the following result:

Corollary 1 The average case analysis of ADL programs with an acyclic composition graph is
automatic.

Function Composition and Automatic Average-Case Analysis 71

2 Two non-trivial examples

This section presents two research problems where the implementation of the expansion process on
a computer allowed P. Zimmermann to discover some results which would have been very difficult

to find by hand.

2.1 Analysis of kth order differentiation

The expansion process has been encoded in the version V1.4 of the system Lambda-Upsilon-Omega.
When one analyzes the function diff2 as diff o diff, the system displays with “printlevel” 3
the expanded form of the function body:

function diff_of_diff (e : expression) : expression;
begin
case e of
(plus,(el,e2)) : plus(diff_of_diff(el),diff_of_diff(e2));
(times, (el,e2)) : plus(plus(times(diff_of_diff(el),copy_of_copy(e2)),
times(copy_of_diff(el),diff _of_copy(e2))),
plus(times(diff_of_copy(el),copy_of_diff(e2)),
times(copy_of_copy(el),diff_of_diff(e2))));
Zero : zero;
one : zero;
X ! zero;
end;
end;

Three other new functions have been also introduced, namely diff_of_copy, copy_of_diff and
copy_of_copy (the function copy is not initially known by the system). The system then proceeds
in the usual way (Algebraic Analysis, Solver, Analytic Analysis) described in [2] and gives the final
result:

Average cost for diff2 on random inputs of size n is:

2 3/2
(1/2n) + (@(n)
for n mod 2 = 1, and 0 otherwise.

In this way, by just adding each time one more call to the function diff, P. Zimmermann was able
to analyze the k-fold iterated differentiation until £ = 7, and obtained the following figures.

average cost average cost
diff | 12132+ O(n) diff2 In? + 0(n%?)
diff3 | 2v2mn®/? + O(n?) diff4 In? +0(n®/?)
diffs | L2 + 0(n®) diff6 2nt 4 0(n"/?)
diff7 | 195/27n%2 + O(n?)

These figures led to conjecture an average cost of

P(k/24+1
e z/k/z Lty o(atker2) (1)

for the kth order differentiation, that was proved to be correct afterwards.

72 Part II. Generating Functions and Symbolic Computation

2.2 Regular languages and the Collatz conjecture

This example shows that function composition, used jointly with analysis of functions with a finite
number of return values [8], helps to compute grammars of sets derived from regular languages.
The Collatz conjecture says: “starting from a positive integer, the iteration of the function
n/2 if n is even
fy= 4 2 Hns e,
3n+1 if nis odd,
ultimately reaches 1”. For example, one obtains the following chain for the number 13: 13 — 40 —
20—-10—-5—16 -8 — 4 — 2 — 1. In [6], David Wilson introduced the sets Si, where the
index k denotes the number of times the function 3n+1 is applied before 1 is reached. In the above

example, the function 3n+ 1 is applied two times (from 13 to 40 and from 5 to 16), thus 13 belongs
to S3. The first sets begin like this:

So = {1,2,4,8,16,32,64,128,256,512,...}
Sy = {5,10,20,21,40,42,80,84,85,160,.. .}
Sy = {3,6,12,13,24,26,48,52,53,96,...}
S = {17,34,35,68,69,70,75, 136,138,140, .. .}.

Wilson and Shallit proved? in [4] that sets S are 2-automatic, that is the base-two string expressions
of each Sy form a regular language (accepted by a finite automaton and writable as a regular
expression). For instance, So — 1 0* and 57 — 101 (01)* 0*. This result implies that the number
of n-bit integers in S} is easily computable: it is the coefficient of 2™ in a rational function derived
from the regular expression of Sy, for example /(1 — 2%)/(1 — z) for 5.
Function composition enables one to compute a grammar for Sy automatically, with a description
file of linear length with respect to k. From this grammar, one easily derives a regular expression.
At the end of this section, such regular expressions for Sy and S5 are given. The idea is to define
the function g dividing its input by two as long as possible, then applying one time the function
3n+ 1:

g(n/2) if nis even,

g(n)=4 0 iftn=1,
3n+1 otherwise.

For instance, ¢g(13) = 40, g(40) = 16 and g(16) = 0; the function ¢ gives a characterization of Sj:
Sk ={n | g®)(n) is a power of two }. (2)

Therefore to construct an ADL program recognizing integers in S, one has to encode the function
g, and a function recognizing powers of two. For this purpose, integers are encoded in base two:
type integer = nil | bit integer;

bit = zero | one;

zero, one = atom(1);

nil = atom(0);
The function g is written using a function called three_x_plus_1, whose input is the base-two
representation of an integer n, and which outputs the base-two representation of 3n + 1:

*This result could also be deduced from the theory of sequential transductors [3, example 8 page 123].

Function Composition and Automatic Average-Case Analysis

73

function three_x_plus_1 (i : integer) : integer;

begin
case 1 of

end;
end;

nil : product(one,nil);
(zero,j) : product(one,three_x(j));
(one,j) : product(zero,three_x_plus_2(j));

bl

The other functions three_x and three_x_plus_2 are defined similarly. With the functions g
and is_a_power_of _two, according to equation (2), one writes the function is_in_S3 to recognize
integers in S3:
function g (i : integer) : integer;
begin
case i of

nil : nil;

(serod) - g(i);

(one,nil) : nil;

otherwise : three_x_plus_1(i);

end

end;

function is_a_power_of_two (i :

bl

begin
case 1 of

end;
end;

nil : false;
(zero,j) : is_a_power_of_two(j);
(one,j) : is_zero(j)

bl

function is_in_S3 (i : integer) : boolean;
begin
is_a_power_of_two(g(g(g(1))))

end;

bl

integer) : boolean;

During the analysis of this whole program, the Ay$ system prints some messages, for example
(among other lines):

Computing composition of

Computing composition of f2 and g : £8
Computing composition of f8 and g : £26

Introducing the new type
Introducing the new type

is_a_power_of_two and g :

2

T84 for which function f26 returns true
T142 for which function £26 returns false

At this stage, it has constructed a set of ADL functions without any composition, containing the
function £26 equivalent to is_in_S3. For such a set, it is possible to derive automatically a
grammar of the data structures for which each function with a finite number of possible outputs (in
particular a boolean function like £26) returns a given value [8]. For example, as explained by the
last lines in the above messages, the system introduced two new data types T84 and T142, which
stand for the integers in S5 and not in S5 respectively. Like for the expansion process, a complete
grammar for T84 and T142 was in fact generated, starting from the grammar of the type integer.

74 Part II. Generating Functions and Symbolic Computation

Due to the form of the rules used (cf [8]), this grammar is unambiguous because so was the grammar
of integer. The raw grammar one gets has 58 non-terminals, among them 27 do not derive any
finite string. After some simplifications by hand (they took longer than the automatic construction
of the grammar!), P. Zimmermann got the following regular expression for Ss:

S3 — ((e| (100101111011010000)*1001011 (e | 1 | 1101 | 110110011 | 11011010000 | 11011010000011))
(100011)*1000 | (100101111011010000)*100101 (e | 11101100 | 1110110100000)) (¢ | 1) (10)*10*.

Similarly, he computed with the help of the Lambda-Upsilon-Omega system the following regular
expression of the set 99, starting from a grammar with 22 non-terminals:

52 — (1| 11100 (011100)* (0 | 01)) (10)* 1 0

Conclusion. This research shows that some kinds of function compositions are well suited for an
automatic average case analysis. The main idea is the following: a program including compositions
first translates into an similar program without composition by an expansion process, then this last
program is analyzed by already known techniques [2].

Composition of functions is not only useful in the description of algorithms, but in some cases it
is necessary to use it, otherwise the description would be too long, as the two examples presented
here prove it. In these cases, the long description is automatically generated by the computer,
therefore it contains no error.

References

[1] P. Flajolet, B. Salvy, and P. Zimmermann. Lambda—Upsilon-Omega: The 1989 Cookbook. Rapport
de recherche 1073, Institut National de Recherche en Informatique et en Automatique, August 1989.
116 pages.

[2] P.Flajolet, B. Salvy, and P. Zimmermann. Automatic Average—case Analysis of Algorithms. Theoretical
Computer Science, 79(1):37-109, February 1991.

[3] J. E. Pin. Variéiés de langages formels. Etudes et recherches en informatique. Masson, 1984.

[4] J. Shallit and D. Wilson. The “3z+ 1” Problem and Finite Automata. Bulletin of the EATCS, 46:182—
185, 1992.

[5] B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9):528-539, September
1975.

[6] D. W. Wilson. Transaction (1778@cvbnetPrime.COM) of usenet.sci.math, 1991.

[7] P. Zimmermann. Séries générairices et analyse automatique d’algorithmes. Thése de doctorat, Ecole
Polytechnique, Palaiseau, 1991.

[8] P. Zimmermann. Analysis of functions with a finite number of return values. Research Report 1625,
Institut National de Recherche en Informatique et en Automatique, February 1992.

[9] P. Zimmermann. Function composition and automatic average case analysis. In P. Leroux and
C. Reutenauer, editors, Séries formelles et combinatoire algébrique, volume 11 of Publications du
LACIM, Université du Quebec a Moniréal, pages 477-486, 1992. Proceedings of the 4th Colloquium.
To appear in Discrete Mathematics.

Function Composition and Automatic Average-Case Analysis 75

[10] W. Zimmermann. Automalische Komplezitdisanalyse funktionaler Programme. PhD thesis; Fakultat
fur Informatik der Universitat Karlsruhe, June 1990. Also available in the collection Informatik Fach-
berichte, number 261, Springer Verlag.

