20

Algorithms for Computing Limits and Asymptotic
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[summary by Bruno Salvy]

Due to problems of cancellations, it is well known that computing the limit of a real function is as difficult as
computing an asymptotic expansion. However, existing symbolic computation systems only perform some
more or less generalised power series manipulation and are unable to compute difficult limits. The problem
studied by J. Shackell in this talk is the computation of asymptotic forms for a real function of one variable
which is given either explicitly by composition of the usual field operations, exponentials, logarithms (exp-log
functions) or by integrals (liouvillian functions). There are two important steps to perform: i) computing

the asymptotic expansion, ii) proving that this computation is valid for a well-defined class of functions.

1 Nested expansions

The following example helps understanding the type of difficulty one encounters when performing
asymptotic expansions:

f(z) =exp(z™! + e7%18%) _exp(z7!), z — .

The classical way to find the asymptotic expansion of such a function is to expand both terms and
then add up the resulting expansions. The first subproblem one has to solve in order to do so is to

prove that
VE >0, e7losT —oz7F) 2 — oo

The second problem is that if one only computes a finite number of terms of each expansion, the
only result one will get is f(z) = O(z~F), for all finite k. A better way to compute the expansion
is to first determine that a cancellation will take place, then rewrite f as

J(z) = exp(a™) - (exp(a™") = 1),
and from there derive the expected result:

—2z

2!

flo) = exp(z )z + o 4+ 0(a7H)), 7 — oo

The difficulties we faced in this computation are those of the general case: comparing orders of
growth, deciding whether a cancellation occurs and dealing with it. Except for the problem of
deciding whether an elementary constant is zero or not (called the “constant problem”), these
are all the difficulties of the general case. Note that the constant problem is central to symbolic
computation. It has not been proved to be undecidable, but is certainly difficult since it is connected
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108 Part II1. Asymptotic Analysis

to subtle conjectures in number theory, such as Schanuel’s conjecture. However, in 1984 Dahn and
Goring gave a non-constructive proof that the problem of computing a limit for an exp-log function
could be reduced to the problem of comparing constants. Then in 1990, J. Shackell gave an actual
algorithm [3] which shows that the procedure followed in the above example can be automated and
will solve the general case. Qur next section will discuss the proper setting for this and we shall
concentrate on an intuitive description of the algorithm in the rest of this section.

The first thing to do is to determine in which asymptotic scale the expansion will take place. A
prior step to this is to compute the set of the different orders of growth occurring in the expression
of f.

A proper definition of order of growth, both practical and general is difficult to arrive at. The
philosophy here is that sums and products are easy; the logarithm has a reducing role, and thus
can only matter in the form of an iterated logarithm of the variable; all the problems have their
source in the exponential. The proper attitude towards exponential is to avoid expanding it more
than necessary, and this led J. Shackell in [2] to the definition of nested form and nested expansion.
Using the classical notations l;(z) for the logarithm iterated k times and likewise ej(z) for the
iterated exponential, a nested form is a finite sequence {(s;,€;,m;,d;, ¢;),1 = 1...k}, where s;
and m; are positive integers, ¢; is £1, d; is a real number, and ¢; will be made more precise later.
Such a sequence represents

e (I (2)61 (),

and recursively

di—1(z) = e (I (z)di(z)),

with the additional constraint that ¢; is of a smaller order of growth than /,,,, and that ¢; tends
to a non-zero finite limit, plus some conditions ensuring that this cannot be reduced by simplifying
an exp(log(.)). Another condition is that the ¢;’s should belong to a Hardy field and we shall come
back to this in our next section. Having thus defined a nested form, one defines a nested expansion
as a sequence of nested forms N;, such that N;;; is a nested expansion for ¢; ;, minus its limit.
These nested expansions should be viewed as a very general asymptotic scale.

An important point is that it is possible to compute effectively with these nested expansions.
The ordering, the exponential and the logarithm are easy, the integral can be done but there are
difficulties with constants of integration, and the product can be done provided one can compute
addition, which is now the difficult operation, because of possible cancellations. To compute the
asymptotic expansion of a sum, one first builds up the set of growth orders of the subexpressions
of the sum, order it, and then starting from the largest order of growth ¢y, compute the shadow
of the expression with respect to it. This shadow is obtained in many cases (integrals are more
complicated) by substituting zero for all the occurrences of #; with ¢ > 1 in the expression. Now
we appeal to an oracle to decide whether the resulting expression is identically zero or not. If it is,
we proceed with the next growth order. The first ¢; for which the expression is not zero gives the
scale in which the expansion must be performed. This argument is turned into an algorithm for all
the exp-log functions in [3].
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2 Hardy fields

Once a sketch of the algorithm is clear, it is necessary to determine a class of expressions for which
it works, and to prove that it actually works. A good framework for doing this is provided by Hardy
fields.

Let X be the ring of germs at oo of €' functions. (Think of it as the set of possible asymptotic
behaviours.) A Hardy field is a subring of X’ which is a field closed under differentiation.

The main constraint here is that non-zero elements of Hardy fields have to be invertible, and thus
cannot have arbitrarily large zeros. Consequently, since their derivative belongs to the field, they
have to be ultimately monotonic and tend to a possibly infinite limit. Also, differences of two
(germs of ) functions of a Hardy field are also in the field and possess a limit, so that this field is
ordered. A short introduction to Hardy fields is given in [4]. If f and g are two elements of a Hardy
field tending to infinity, they are said to be comparable when there exists a positive integer n such
that

f<g" and g< f",

where the order is that of the field. Extending this by saying that +f and f~! are comparable
and that two elements tending to a non-zero finite limit are comparable yields a decomposition of
the Hardy field into equivalence classes called comparability classes and denoted v(f). One should
think of these classes as basic functions of an asymptotic scale. Their number minus one is called
the rank of the field.

As an important special case of Hardy fields, Rosenlicht fields have been considered by J. Shackell.
These are Hardy fields of finite rank, closed by f — f¢, for all real ¢. In [4] it is proved that any
element of a Rosenlicht field has a nested expansion. Besides, an algorithm is given in [4] to compute
a nested expansion of solutions of algebraic differential equations that lie in a Hardy field. Basically,
from the order of the equation, one deduces all the possible asymptotic forms of its solutions lying
in a Hardy field, and then one tries to substitute in the equation and either get a contradiction or
an induction to a “simpler” problem.

A complementary algorithm, described in [2] will compute a nested expansion for liouvillian func-
tions. This needs a little more algebra. If F is a Hardy field, we need a computable set Z(F) =
{t1,...t,} of representatives of its comparability classes. Recall that such a set is computable
for a Hardy field containing the solutions of an algebraic differential equation. Now the algebraic
analogue of shadows together with its complementary notion of ghost is defined by associating to
an element ¢ € F tending to zero the set

T (F)=A{f € F;36>0,|f] <1}

Then a subfield S; of F has the shadow property with respect to t if its intersection with Z,(F)is {0}
and it is closed under relative differentiation (a,b € S = a’/b’ € §). The ith shadow of f € F, n;(f)
should be thought of as the part of f which is in some S, (F), and the ¢th-ghost is simply f—n:(f).
Given a computable Hardy field F, the extension by a function 6 is computable provided that

(i) we can compute a Z(F) monomial 7" such that §/71" has a non-zero finite limit;
(i) we can compute the ¢th shadows and ghosts ¢; and v, for 8/T;

(1ii) Si(F)(¢1,...,¢;) has the shadow property with respect to t; and ; € Z;;
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(iv) there is a zero-equivalence algorithm for F(¢1, ..., ¢n,0).

We now display three important cases when this is possible (except perhaps (iv)):
Exponential extensions If g € F then setting 7;(exp(g)) = exp(ni(g)) works.

Integral extensions If f € F, then by a theorem of Hardy one can find 7. The computation of
the shadow depends on the relative orders of growth of 7" and ¢; and can be done (see [2]).

Algebraic extensions If P is a polynomial over F then it is known that the possible compara-
bility classes of its solutions are those of F, so one can just substitute an arbitrary monomial and
compute indeterminate coeflicients. This is the basis of the algorithm, together with a general form
of Sturm’s theorem.
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