28
Fast Two Dimensional Pattern Matching

Mireille Régnier
INRIA, Rocquencourt

[summary by Pierre Nicodéeme]

e address the problem of finding a m X m patternin a nxn text. We conjecture that, with a constant
(i.e. O(m?)) additional memory, this complexity lies between [1+O(1)n? and [2+O(1)]n?, which is
different from the linear result in dimension 1. We provide an algorithm that achieves this goal with
good average performance, that can be easily coded and that can be made alphabet independent.

1 Introduction and State of the Art

First algorithms for 2D pattern matching [4, 5, 9, 15] have been rather rough extensions to two
dimensions of 1D pattern matching paradigms, that did not really used the specificity of 2D. Hence,
all had an average case of n? at least. Additionally, most would need a O(n) extra-space. The only
exception is [15], but it needs a O(n?) extra-space. By dividing the text into subpieces, [9] reduces
its extra-space to O(m?), but the price to pay is a substantial increasing of the average number of
comparisons. Moreover, all are alphabet dependent.

Such performance sounds very poor when compared to 1D theoretical and practical results. For
the average case, a nlo% theoretical bound has been proved in [14], and it is achieved, for uniform
distributions, by a rough algorithm in [10]. Boyer-Moore and its variants are sublinear for “non
pathological” distributions and non-binary alphabets [3, 13]. Worst-case complexity relies between
1 and 2 for most practical algorithms [6], and theoretical worst case complexity was recently proved
to be 1+ O(L) [7].

In [2], 2D specificity is used, and a first sublinear algorithm in the average is proposed. It drasti-
cally improves on previous ones, as average performance becomes O(”;f) with O(m?) extra-space.
Additionally, the worst case does not depend on the pattern size, being O(n?), and it runs on-line.

2 The algorithm

2.1 Formalism

Worst-case complexity is related to the mazimal number of occurrences of a searched pattern P in
all possible texts, hence, to maximal coverings of the text by the pattern. As P can overlap with
himself, these may not be tilings. This can be expressed as a function of a canonical decomposition
of P. Let us say a few words on 1D complexity [8]. It is proved in [11] that a self-overlapping
pattern can be written p = u(vu)™, m > 1,u # €, where vu is primitive, i.e. not the power of any
word w. The pattern p is periodic if and only if m > 2. As discussed in [12], the decomposition
is not unique although at most one satisfies m > 2. Nevertheless, two coverings ¢ = u(vu)* and
t = z(wz)* cannot be interleaved. Hence, 1D worst case complexity is linear [7].

This property disappears in 2D pattern matching. Two coverings can be interleaved.

155

(P1):

156 Part 1V. Analysis of Algorithms and Data Structures

Definition 1 An alignment of a pattern P with himself may be characterised by canonical coordi-
nates: a 3-tuple (z,y,dir). One of the two occurrences, say P,, has a left corner inside the area
defined by the second one, P;; © and y are the row and column indices so defined, and dir is a
boolean set to true (resp. false) when this is an upper (resp. lower) corner.

We will refer to dir as the direction of the alignment, and use the terminology of down or up
alignment.

Definition 2 An alignment of a pattern P with himself is consistent if no mismatch occurs in
the overlapping area.

One also says that P self overlaps. When the overlapping area includes the center(s), P is periodic.
We define here the repetitions in the pattern that will allow to speed up the searching process
(compared to the naive search). We also define an order:

Definition 3 Given two overlapping potential matching areas PM and PM’ with canonical coordi-
nates relative to the beginning of the text (z,y) and (2',y"), we define the order:

PM<PM <~ y<yor(y=y andz<z").

Definition 4 Two potential matching areas are said to be (fully) consistent in either one of the
two cases:

they do not overlap,

the associated alignment is consistent.

Definition 5 A setl of overlapping areas is said fully consistent if its elements are mutually con-
sistent. Its left border is the column coordinate of its minimal elements.

Remark that all column coordinates of an overlapping area range between the left border [and
I+ 2m. We also define a canonical checking order for all patterns in the text: say from left to right
and top to bottom. This yields an interesting property that we will use:

Lemma 1 Let PM' be a potential matching area. We define property (P1) by:
All checked positions are

either matching positions of some smaller consistent overlapping potential matching areas.

or mismatching positions of non consistent potential matching areas.

Then, we will use an array MISMATCH(z, y, dir) of couples of integers (X,Y): (X,Y) is either
(0,0) for a consistent alignment or the coordinates of the first mismatching position. This allows
checking consistency in constant time. Additionally, this provides a criterium to discard a potential
alignment of P with some potential matching area PM’: namely, whenever some PM < PM' has
been checked until mismatching position « interior to the overlapping area. This criterium is

checked in constant time (procedure Check in our code). Remark that the preprocessing is trivially
achieved by checking (}_7" ¢)? characters, which is O(m*).

Fast Two Dimensional Pattern Matching 157

We are now ready to explain our algorithm. It relies on a division of the whole text in slabs of height
m, delimited by rows km, k € N. These rows are said primary rows, and the characters in them
primary characters (versus secondary rows and characters). Then, any potential matching area will
intersect one primary row, and only one. This intersection will be any row p;, « = 1...m of the
pattern. Hence, we proceed in two stages. First, a multi-string searching of strings p; is performed
on primary rows, defining a potential matching area. Any multi-string searching automaton [1] can
be used. We name this automaton “automaton A”, this stage horizontal or primary search. The
second stage checks secondary characters. So far, this “slab method” does not significantly differ
from [2] that provided a good average case: O(%—Q) In order to ensure simultaneously an optimal
worst case (or close to optimal) we delay secondary search until we know “enough information” to
the right. And while performing it, we make use of all known information to the left. Qur horizontal
search is completed as follows: initialisation runs automaton A until some pattern is found, uniquely
defining a potential matching area, First, with column coordinate col. The stationary stage consists
of both checking the consistency of potential matching areas, and restarting the automaton A (which
remains loaded), whenever the leftmost potential matching areas have been successfully checked or
discarded. In the stationary stage, we run A to detect the next PM in the range col, col + m — 1.
ListCandidate is maximal if and only if no more exists. Else, we check PM against every candidate
from ListCandidate. If it is consistent with all of them, it is inserted to it. If not, a “Duel Strategy”
using Check allows to kill a (strict) subset of ListCandidate U {PM}. Remark that whenever
First is killed in this process, the left border shifts to the right and automaton A is restarted.
Then, we start the effective secondary check, checking its minimal element, First, and avoiding to
redo comparisons on positions already checked during the same effective secondary checking; this
is done by maintaining a list of 2m-1 intervals of characters already checked. When it ends, we
update ListCandidate using our Check procedure if last comparison was a mismatch and restart the
horizontal search. Remark that all elements remaining in ListCandidate being consistent with the
last checking, property (P1) is still ensured. For a sake of clarity of the description and of the code,
we assume now that all p; are different. We delay after the discussion of worst case complexity the
description of the general case.

Finally, we show how to avoid multiple comparisons in secondary search.

Lemma 2 Let PM be a valid candidate, i.e. a potential matching area for which Secondary Search
is called, and col its column coordinate. For any secondary row i,1 < |i| < m—1, the largest column
index of text positions scanned in a secondary search, j, satlisfies:

either j < col,
or all positions between col and j are matching positions.
Proof. From our ListCandidate construction, whenever SecondarySearch is called for two overlap-

ping areas, they are consistent. Assume now j > col, and let P My be the area for which [z, j] was
scanned. If ¢[7, j] was a mismatch, then PM would have been discarded from ListCandidate after

this SecondarySearch call. Then, it was a match for PMy, hence for PM. O
SlabSearch((text,n x n), (pat,m x m))
for(k—m;k<n;k—k+m){ /* k: current primary row index */

q — qo; /* searching a fully consistent set */

for(j—1;j<n;j—j+1){
Repeat { ¢ — A(q,text[k,]); i — Output(q); } until (i # 0); /* i: found string index */

158 Part 1V. Analysis of Algorithms and Data Structures

Insert(ListCandidate, (1, §));
while (ListCandidate #)

{
while (j < col +m & j <n) /* col: column index of First */
{
q — A(q,textlk, j]); i — Output(q);
if i # 0 then {
for (¢, ') € ListCandidate { /* Check (i,7) consistency with ListCandidate */
Survive «— true;
(X,Y) — MISMATCH(|#' — i|, j' — j, sign(i' — i) ;
if X +Y #0 then /* kill one candidate */
if (Survive — =(text([k — ' + X, j' + Y] == Pat[X,Y])) then
Delete(ListCandidate, (', j')) /* Mismatch on (¢, j') in ListCandidate */
else break; /* Mismatch on (4, j): stop checking ListCandidate, restart A */
} /* end for */
if Survive then Insert(ListCandidate, (4, j)); /* (i,7) consistency */
}; /* endif */
J—i+1
} /* end second while */

SecondaryCheck(First);
Update(ListCandidate);

/* Secondary search end; restart ListCandidate search */

3 2D-Complexity

We defer the precise study of 2D-complexity. This study will make an exhaustive analysis of
plane covering and tiling by patterns not overlapping, or overlapping in different ways. Theoretical
bounds will have to be derived from this analysis.

4 Alphabet Independency

As we said above, our algorithm depends on the alphabet only by the multistring searching au-
tomaton (and the preprocessing). It can be made alphabet independent in the following way [2];
choose any right to left automaton, represent it as a m-ary tree and map it to a binary tree in
the classical way. A final state is attained in (I 4+ r) transitions, where [and r are the number of
left and right branchings on the path to this state. Note that a left branching is associated to a
match while a right one is a shift to another string. Consider now a step where one stopped on
(lo,70). The rough upper bound ly + 79 < 2m holds. Assume first the (strictly positive) shift s
also is greater than 2. If no string was found, then 2 columns are definitely discarded, hence a
cost (m{‘)fl)s <1+ O(%) This bound also holds when p; is found but SecondarySearch not called
later on the alignment so defined. Now, assume p; is found and defines an alignment on which
SecondarySearch is called later. Within a range of m, we have k steps with a cost > ;~¢(l;+7;). By
construction Y I; < m and Y. r; < m+ m (number of strings and potential number of fails). This
finally yields a 4m bound, and a O(1) amortised cost for primary characters. Last, we consider
a shift s = 1 and assume a strict suffix Suf of some string is found. If |Suf| < m — 2, we reason

Fast Two Dimensional Pattern Matching 159

as above. Else, we have rg + r; < m, unless Suf = a*. More generally, we either have > r; < m

within a range of m or we are led to previous cases. The end of the proof for p; = a

m=Lly ig similar

and we skip the technical details.
Hence, the difference to linear cost comes from slabs overlaps on secondary rows.

References

(1]

2]

A. V. Aho and M. Corasick. Efficient String Matching. Communications of the ACM, 18(6):333-340,
1975.

R. Baeza-Yates and M. Régnier. Fast algorithms for two dimensional and multiple pattern matching.
In SWAT’90, volume 447 of Lecture Notes in Computer Science, pages 332-347. Springer-Verlag, 1990.
Proc. Swedish Workshop on Algorithm Theory, Bergen, Norway. To appear in IPL.

R. Baeza-Yates and M. Régnier. Average running time of Boyer-Moore-Horspool algorithm. Theoretical
Computer Science, 92:19-31, 1992.

T. Baker. A technique for extending rapid exact string matching to arrays of more than one dimension.

SIAM Journal on Computing, 7:533-541, 1978.
R. Bird. Two dimensional pattern matching. Information Processing Letters, 6:168-170, 1977.

R. Cole. Tight Bounds on the Complexity of the Boyer-Moore string matching algorithms. In SODA 91,
pages 224-233. STAM, 1991. Proc. 2-nd STAM-ACM Symp. on Discrete Algorithms, San Francisco, USA.

R. Cole and al. 1D pattern matching complexity, 1992. Preprint.

L. Colussi, Z. Galil, and R. Giancarlo. On the exact Complexity of string matching. In FOCS’90, pages
135-143. IEEE, 1990. Proc. 31-st Annual IEEE Symposium on the Foundations of Computer Science.

R. Karp and M. Rabin. Efficient randomized pattern-matching algorithms. IBM Journal of Research
and Development, 31:249-260, 1987.

D. E. Knuth, J. Morris, and V. Pratt. Fast pattern matching in strings. SIAM Journal on Computing,
6:323-350, 1977.

M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, Mass., 1983.

M. Régnier. Knuth-Morris-Pratt algorithm: an analysis. In MFCS’89, volume 379 of Lecture Notes in
Computer Science, pages 431-444. Springer-Verlag, 1989. Proc. Mathematical Foundations of Computer
Science 89, Porubka, Poland.

M. Régnier. A language approach to string searching evaluation. In Proceedings of Combinatorial
Pattern Matching 92, Tucson, Arizona, pages 15-26. Springer-Verlag, 1992.

A. C. Yao. The complexity of pattern matching for a random string. SIAM Journal on Computing,
8:368-387, 1979.

R. F. Zhu and T. Takaoka. A technique for two-dimensional pattern matching. Communications of the

ACM, 32(9):1110-1120, 1989.

