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Classical B—trees and prefiz B—trees [1] offer both fast, direct addressing and easy sequential
processing. They are balanced, segmented, and flexible. Flexibility means that a B—tree leaf
splitting may be done at any position inside the leaf. This property is emphasised: one generates
and suppresses empty leaves, while forcing the other leaves to a 100% storage utilisation. This
property is important when memory utilisation is a crucial matter, as in memory databases. The
segmentation allows parallel processing.

Other methods have been proposed in the last decade; they do not offer all the B—tree properties:
the bounding disorder method [8], Trie hashing [7], compact 0-complete tree [10], the compact trie [5,
3] (section 1). This last structure is based on a bit-map representation of the tries. It is a simple,
powerful, but not segmented structure.

It is shown (section 2) how to split the compact trie in a segmented and flexible structure of B—tree
type: the compact balanced trie. Fxperimental results are given in section 3.

1 Compact Trie

The compact trie representation used by Kouacou-Kouadio, De Jonge, Tanenbaum and Van De
Riet [5, 3] is composed of a bit-map and of a pointer-list. The 0 or 1 bit value of the trie corresponds
to the digital values of the keys (Figure 1). The bit-map is the 0 — 1 sequence obtained by right
to left preorder traversal of the trie (Figure 1). The pointer list associates a pointer to each leaf
of the trie. The basic property of this representation is that any bit of the bit-map followed by a
1-bit, as well as the last bit, represents a leaf node.

Insertion and deletionimply updating of the bit-map and of the pointer-list. The retrieval algorithm
is based on a joint processing of the bit-map and of the pointer-list. Each bit of the retrieval key
is checked from left to right; for each 1-bit found, the corresponding 0-subtrie is skipped over.
This skipping is straightforward: checking the type (internal node or leaf) is easily done with the
characterisation above and in any subtrie the number of leaves exceeds by 1 the number of internal
nodes. The structure of Figure 2 is used for a compact representation. Fach pointer is four bytes
long, and the first byte of each pointer is the number of consecutive NIL-pointers at this point.
The compact trie is not a segmented structure; therefore the linear search algorithm is O (nZ) key
comparisons with n keys, and partial locking is impossible.

2 Compact-Balanced Tries

2.1 Trie Splitting

Figure 3 illustrates a trie splitting into two subtries. The subtrie T'1 differs only from the trie T by
an incomplete bit-map and pointer-list. An edge-key and a corresponding edge-depth are added to
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Figure 1: binary trie (bit-list and pointer-list)
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Figure 2: compact representation corresponding to the trie of Figure 1

subtrie 7'2. This allows (subsection 2.2) to restart the linear search algorithm of the compact-trie
from the node corresponding to the edge key. Therefore, splitting a trie (or equivalently a subtrie)
implies the splitting of the bit-map and of the pointer-list, and the creation of an edge-key, with a
corresponding edge-depth.

There are no constraints for the choice of the splitting point. It may be chosen at the middle of
the pointer-list which is the biggest part of the compact trie representation. The iterative splitting
of the trie (and of the corresponding CB-nodes) generates a balanced tree structure.

2.2 Retrieval algorithm and edge-depth calculation

Shadow interior nodes and 0-leaves, i.e. leaves accessed through a 0-bit, must be handled along
the edge during the retrieval algorithm. Key F retrieval skips the subtrie containing the keys A,
C, D, E, and four shadow nodes; this subtrie contains 4 interior nodes (3 shadow), and 5 leaves
(1 shadow). The knowledge of the edge-key allows to rebuild the shadow nodes; the edge-subtrie
skipping algorithm integrates this construction inside the ordinary subtrie skipping algorithm. The
splitting process requires the computation of the depth of a new edge key, which corresponds to
the computation of the depth of the corresponding node in the trie. This computation makes use
of a stack algorithm (Figure 5 represents the stack evolution for trie T of Figure 3). The stack is
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Figure 3: trie splitting and corresponding CB-nodes (compact-balanced nodes)

built from the positions of the 0-bits of the nodes accessed in a preorder traversal of the trie, by
use of the bit-map.

The bit-map is scanned from left to right. For each 0-bit, the depth is increased by one and stacked.
For a 1-bit, if the preceding bit is a zero, the depth remains unchanged, else the depth is equal to
the depth of the top of the pile; thereafter unstacking is performed.

When proceeding with an edge key, the starting depth is the edge-depth and the pile has to be
loaded with the 0-bit positions of the edge-key (limited to the edge-depth); then the node depth
may be computed as previously. And the CB-Node splitting is achieved.

2.3 Merging and Balancing

The balancing process between two CB-nodes may be done by merging the 2 CB-nodes into a
double size one, and then splitting this node into two CB-nodes; merging 2 CB-nodes C'1 and C2
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Figure 4: Edge-subtrie skipping (retrieve key F')
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Figure 5: node depth computing

(keys of C'2 being bigger than keys of C'1) results in inserting the edge-key of C2 in C'1, adjusting
the bit-map and pointer-list of C'2 and concatenating them to those of C'1.

3 Experimental Results

Experimental results have been obtained on the Unix “words” dictionary and on an equivalent
number of randomly distributed keys.

Bits/Keys number of keys | bit-map | NIL-pointers | compressed NIL-pointers
Sequential data any 2.0 8 1.0
Random data 25259 2.8 8 2.1
Unix Dictionary 25259 10.2 8 4.2

These results, (average number of bits per key in the bit-map and the NIL-pointers list), compare
favorably to the results of the compact 0-complete tree (8 bits per key for random data with a 57%
storage utilisation [11]); the storage utilisation of a compact balanced trie may be raised to 100%,
thanks to the flexibility property (no constraints on the splitting point).

Sequential data do not generate NIL-leaves, while the high number of bits in the case of the Unix

Dictionary is strongly dependent on the structure of alphanumeric data which generates many
NIL-leaves.
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4 Conclusions

These compact-balanced tries provide excellent compaction results. The relative moderate perfor-
mance of the bit-map handling and the relative complexity of the algorithm are slight drawbacks.
Suggestions (use of translation tables) are made in [3] to avoid bit-string handling.

It is proved that the linear representation of tries can be segmented and handled with a complete
flexibility; this important novelty allows to step down from global linearity of the algorithms to local
linearity and insures that worst cases of insertions are handled as well as a B—tree could do. The
compact-balanced tries may be considered compact B—trees and could easily be implemented when
lazy deletions policies are used [4]; their segmentation allows parallel partial locking and parallel
processing [2], while their compactness fits with the constraints of memory databases (performances
should be compared to the ones for T'—trees [6]).

Moreover, as the bit-map representation is a minimal representation for a trie, one may think that
the compact-balanced trie approaches a theoretical optimum in terms of compactness.

The research presented in this paper could be extended in different ways: a compact representation
for multidimensional data and a probabilistic analysis of the NIL-pointers, in both cases of random
keys and of alphanumeric keys.
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