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Limit Distributions in Quadtrees

Thomas Lafforgue
LRI, Orsay

[résumé par Philippe Flajolet]

Quadtrees constitute a classical data structure for storing and accessing multidimensional data. It
is proved here that, in all dimensions, the cost of a random search in a randomly grown quadtree
has logarithmic mean and variance and that it is asymptotically distributed as a normal variate.
The limit distribution property extends to quadtrees a result only known so far to hold for binary
search trees.

The analysis is based on a technique of singularity perturbation analysis applied to linear differential
equations satisfied by intervening bivariate generating functions.

The work described is based on a joint paper of Lafforgue and Flajolet [4].

1 Introduction

Quadtrees are a well known data structure discovered by Finkel and Bentley which is discussed in
classical treatises on algorithms [5, 11] and examined in great detail in Samet’s reference books [9,
10]. Their analysis has made visible progress over recent years [2, 3, 6, 7, §].

The probabilistic model considered takes all data uniformly from the d—dimensional hypercube
Q = [0,1]%. The search cost D, is defined as the cost—measured in internal nodes traversed—of
searching a random point in a randomly grown quadtree of size n — 1; it is also called the insertion
depth of the nth node and is a random variable defined on the space Q"1 x Q = Q".

The main result reported is that D, converges in distribution to a Gaussian variate when the
size n — 1 of the tree structure becomes large. Figure 1 illustrates the clear occurrence of this
phenomenon already for low values of n.

Theorem 1 (i). The mean p, and standard deviation o,, of the cost D, of a random search in
random quadtree of size n — 1 in dimension d > 1 satisfy asymptotically

2 2
oy ~ Elogn and Op ~ \/ﬁlog n. (1)

(ii). The distribution of D,, converges in distribution to a normal variate: for all real o, 3,

— g
Pr{a < Dnginﬂn <g} — \/%/Q e dy (n — o). (2)

The mean was determined by Devroye and Laforest [2] and independently by Flajolet, Gonnet,
Puech, and Robson [3].
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Figure 1: The histogram of the probability distribution of D,, (for dimension d = 2 and n = 100)
plotted against a Gaussian density function of same mean and variance.

2 Basic equations

Two integral operators play an essential role here:

e = [0t 3= [

Lemma 1 The generating functions of the costs of a random search, successful (C,,) and unsuc-
cessful (D,,), in a quadtree of size n are given by

Tolu) = ZPr{Cn = k}uk = % Qduu_ 1(¢n(u) -1)

g (3)
fulu) = Y Pr{Dy = Kt = o (6u(w) — b (u),

k

where the bivariate generating function
b(u,z) = E Pr(u)z"
n

of the level polynomials ¢, (u) is characterized by the integral equation
D(u,z) =1+ 29I T d(u, 2). (4)

Proof. A quadtree of size n gives rise to a root subtree of size k with probability

1 1
T L G DG T G T D) ®)

where the summation is over n > {4 > £y > --- > £;_1 > k. The rest relies on simple combinatorial
properties of the “level polynomials” ¢, and on translating recurrences into generating function
equations. O
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3 Lower dimensions

The binary search tree (d = 1). The main results are originally due to Hibbard for the mean
and Lynch for the whole distribution. See [8]. Related results hold for successful searches. When
d = 1, the integral equation satisfied by ®(u,z) is homogeneous of order 1, and thus solvable by
quadratures. We find

O(u,z) = ﬁ and On(u) = (

2u)-2u+1)---2u+n-1)
n!

: (6)

Thus, we have [u*]¢,(u) = 2F[}] /n!, which involves the Stirling numbers of the first kind (“cycle”
Stirling numbers).

Theorem 2 (Hibbard, Lynch) The cost D,, of a random search in a binary search tree of size
n — 1 has mean and variance given by

fn =2(H,—1)  o2=2H,—4H® 42,

and probability distribution

2k [ —1

The standard quadiree (d = 2). In the case of dimension d = 2, the analytic model of quadtrees
can be solved explicitly in terms of hypergeometric functions that are otherwise known to occur in
the average case analysis of partial match.

Theorem 3 The cost D,, of a random search in a standard quadiree of size n — 1 has a generating
function v,(u) given by

2y = B0y — 1 " f2u\[2u—-1\[{2u—-24+n—7
=R W—lj;(j)( j )( neJ )

=0

Thus the probability distribution of D, is expressible as a complicated convolution of Stirling
numbers.
Proof. The generating function ® of the level polynomials satisfies

2 dx d dt
ot =12 [ oy
(u72) —I_ u 0 w(l_x) 0 (u7 )1_t

an equation whose solution admits an hypergeometric form:

1
O(u?;2) = mF[—Qu,l—Qu;l;z]. (7)
where ; ( b ) )
a-bz ala+1)- + 1)z
L2, b3 ¢; 2] PR TR c(e+1) T (8)
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4 The singularity perturbation method

The architecture of the proof of the main theorem asserting asymptotic normality of the distribution
is transparent although implementation of it requires quite some care. In essence, we need to
solve a double inversion problem in order to recover the coefficients [z"u*]®(u,z). A first stage
consists in extracting ¢, (u) = [2"]®(u,z). This involves examining the influence of a parameter
(u) on the singularity (at z = 1) of a differential equation. For that reason we call our method a
singularity perturbalion method. It is intermediate in difficulty between regular perturbations and
singular perturbations, the latter implying reduction of order®. A second stage (from ¢,(u) to its
coefficients) relies on continuity theorems of analytic probability. We offer here a brief outline.
The starting point is the integral equation furnished by Lemma 1,

D(u,2) =14 29I T ®(u, 2). (9)

That equation is itself equivalent to a linear differential equation with coefficients that are polyno-
mial in the main variable z and the parameter u. The order of the equation is equal to the dimension
of the data space, d. The standard theory is more conveniently developed from differential systems
rather than equations, and the associated system is also of dimension d.
The most common case for linear differential equations and systems is the one called regular singu-
larity or singularity of the first kind [1, 12]. In such a case, a basis of solutions can be found that
are of the approximate form ¢/(1 — z)®. The possible exponents a are determined by substituting
into the equation. They thus appear as roots of a polynomial called the indicial polynomial.
In a parameterized case like (9), we thus expect solutions to involve linear combinations of terms
of the form ()
e(u

(1= z)at” (10)
as z — 1. In the case of (9), it is found that the exponents are the algebraic functions that are
roots of the indicial equation

() = 2% = 0.

Forms belonging to the general type (10) were already encountered when d = 1, see Eq. (6), and
when d = 2, see Eq. (7).

As z — 1, the dominant term in the expansion of ®(u, z) is the one corresponding to the root 2u
which has maximal real part. In particular when the parameter u is close to 1, this is the principal
determination of 2. From the shape (10) of singular elements, we thus expect the singular form
of ® to be

1/d

c(u)
O(u,z) ~ 1=yl (z—1), (11)
at least for w near 1.
According to the usual principles of singularity analysis, the dominant singular behaviour of ®
provides the dominant asymptotic term in its coefficients ¢, (u) = [2"]®(u, z). Translating (11) to
coefficients, we expect to get, as an approximation of ¢, (u),

nzulfd—l

¢n(u) = c(u) W. (12)

®We refer to standard texts like [1, 12] for basics on linear differential equations in the complex domain.
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Given the approximation (12), values of the polynomial ¢, (u) are asymptotically known at least
for u in a neighbourhood of 1. An inversion problem (the second one after the phase of singularity
analysis ensuring the transition from (11) to (12)) is then to be solved. The approximation (12)
permits to estimate ¢, (e*?), suitably normalized, when @ lies near 0. The Fourier transform of the
distribution defined by the coefficients of ¢, (u) tends to e=%/2 the characteristic function of the
Gaussian distribution:

—ifan [bn Sl __—62/2

Iim e AL S A ,

for some suitably chosen centering constants a,, b, (that may be taken equal to the mean p,, and
variance o, of the distribution).

Since ¢,,(u) has positive coefficients, the continuity theorem for characteristic functions (or equiva-
lently Fourier transforms of measures) of analytic probability theory applies. This leads to the end
result, namely the convergence in distribution to a normal distribution for the coefficients of ¢, (u)
which in turn carries to the distribution of D, as expressed by the main theorem.

The method is expected to be instrumental for a wide class of recurrences whose generating functions
satisfy parameterized linear differential equations.
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