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Holonomic Symmetric Functions
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LRI, Orsay
[summary by Philippe Flajolet]

By suitably defining a notion of holonomy for symmetric functions in infinitely many variables,
Gessel [3] derives or rederives the holonomic character of generating functions for structures as
diverse as: k—regular graphs; Young tableaux of fixed height k; permutations with longest increasing
subsequence of length k; square integer matrices with row sum and column sum k; k X n latin
rectangles.

Fach of these problems represents a highly non trivial enumeration problem that is far from being
amenable to direct symbolic methods (except for simple boundary cases).

Recall that a univariate function is holonomic if it satisfies a linear differential equation with
polynomial coefficients (this is also called D-finite). Accordingly, its coefficients, in turn named
holonomic, satisfy recurrences with polynomial coefficients (this is also called P-recursive).

Symmetric functions. We work with infinitely many indeterminates zq,5,..., and we are
concerned with particular symmetric functions.
(a). If A = (A1, Az, ..., Ag) is a partition, then define the monomial symmetric function
A1 A A
my = Z acillacl-;’ . "Tikk7 (1)
11,22 500s0k

the sum being extended to all distinct indices. For instance, if A = (3,1,1) = (3,1?), then m) =

S 23y,
b). The elementary symmetric functions are
Yy sy

€= Y Ty Ty, (2)

2-1 <22<<2r

so that

E(t):=)Y et" = [J(1 4 it). (3)
r>0 >1
This is extended to partitions indices: ey = ey, ey, - -ey,. For instance, e@331,1,1) = eed.

(c¢). The complete symmetric functions are

he= Y wmimi (4)

i1<ig < iy

so that

H(t):=> hpt" = J[(1 - zit)~". (5)

r>0 >1
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52 Part II. Generating Functions and Symbolic Computation

One similarly defines hy = hy, hy, -+ -hy,.
(d). The power symmetric functions are

pr=2_7; (6)

so that

tw;
P()y:=>_pt" =) 1 — (7)
- ; —tx;
Again the definition extends to py = py, Py, =+ - P,

Each of the sets {e)}, {hr}, {mr}, {pr} constitutes a basis for symmetric functions. Formula for
changing bases derive from the generating functions (3,5,7).

Operations. (a). One classically defines a scalar product with orthogonality properties

(P1) s (moashy) = 6x (P2): (Pr,Pu) = 22654, (8)

where zy = 171272 .. fThpylpgl oo Lif A = (171272 -0 k7).
(b). The internal (or inner) product is defined by

Py ¥ P = Oy u2aP). (9)

It is like the scalar product except that it keeps track of variables.
(c). Finally, there is an operation of composition (also known as plethysm) written f(g) and defined

by pm(pn) = Pmn-

The example of regular graphs. The scalar product permits us to extract coefficients: If f is
symmetric, then the coefficient of x?ll - m?k in f is up to normalization the coefficient of m) in f
which equals [by (P1) of Eq. (8)] (f, k). Given that f is symmetric, it can be expressed in terms
of the power functions p,, as well as hy. The computation of the coefficient then reduces to the
computation of a scalar product which [by (P;) of Eq. (8)] is a modified Hadamard product of two
functions.

Let us work out the example of 2—-regular graphs. The function
G(z;t) = H(l—}—xixjt) (10)
i<j

is a generating function in infinitely many variables that encodes all the graphs over a denumerable
collection of vertices. (Vertices are labelled and vertex ¢ is represented by the indeterminate z;.
Thus z;z; encodes the edge connecting ¢ and j.) The additional variable ¢ records the number of
edges. It is a simple exercise to express GG in terms of the p, = >, z*:

log G = (-1t (E ) ,
n=1 1<g

so that

G(x;t) = exp (% i %(pi - pzn)) : (11)

n=1
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The number R,, of labelled 2-regular graphs on n nodes is given by
Rot™ = [2323 - 22])G(a;1).

n

From the definition of my, we have [z} - - -2%]m gy = n!, thus

R, 1" = n! - [coeff. of myn| G(51),
and by orthogonality [see (P1)]:

t" "
Rnﬁ = <G($7t)7h(2")> = <G($;t)7h2>' (12)
Quantity ho is itself expressible in the p’s: hy = %p% + %pg. Thus:
t" . 1, 1 .,
Rnﬁ = <G(£E,t),(§p1 + §p2) > (13)
In this scalar product, only the part of G that involves p; and p; counts. In other words,
L t 12 1 1,
Ry = (exp(5(pT = p2) + 7p2), (P17 + 5p2)")- (14)

This already provides a combinatorial expression (a sum of finite “rank” in the sense of Comtet [2,
p. 216]) for R,, upon expanding and using (P;). The inner product can also be formulated as a
Hadamard product with respect to {py, p2} and ¢. One finally needs to generate the coefficients z)
with is achieved by means of a further Hadamard product with

o0

O (p1)®(2p2) where b(z) = Z nlz".
n=0
Summarizing, we have obtained®
SR = LS - )+ T e S () B(2p2) (15)
n_y = Y - 2 I ’ ’ ’ 1 2 '
~ n! 9 \F1 412 t,p1,p2 1_ t(%p% + %pQ) P1,P2 —_

The process is of course fully general.
Theorem 1 For any fized k, the exponential generating function of k—reqular graphs is holonomic
and expressible as a Hadamard product

k
exp(E(t;p)) O1p R(p) Op [ (ip;)

i=1

bl

p—1

for some effectively computable polynomial £ and rational function R.

Notice that the number of r—regular labelled graphs on n vertices satisfies (see Bollobds’s book [1,
11.4]):

k k13
RE) /2174 ( k<2 ) /2

ek/2k!

*The enumeration of 2-regular graphs is accessible to symbolic methods and it is easily found directly (see [2,
p. 272]) that the exponential generating function is

_ 2
e t/2—t° /4

1—-1
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Coefficient extraction. The example of regular graphs points to a general methodology by which
coeflicients of sufficiently “regular” monomials inside huge symmetric functions are extracted using
a combination of change of bases and inner or scalar products. This extends techniques used earlier
by Read, Goulden and Jackson and others. A typical statement is:

Theorem 2 The coefficient [x1xy - -x,] in the symmetric function f is computable by its gener-
ating function,

o0 AX'TL B
Z{[$1$2$n] f}7 = f(X,0,0,0,...),
n=0 '

where f(p1,pz,...) is the expression of f in terms of the p’s.

This is Theorem 1 of [3]. A similar theorem gives the bivariate generating function for the coefficient
of &1+ &mal 4 -2k, in [ (Theorem 2 of [3]) or [z -+ &pad 4 -~ 2] ,,] [ (Theorem 3 of [3]),
and so on.

There are applications to the area of order patterns (up and down patterns, increasing subsequences)
in permutations with repetitions of various types. For instance, the symmetric generating function
of up—and-down sequences is seen to be (use inclusion—exclusion)

B=1)Y (1) har,

from which counting results derive for alternating permutations of multisets that involve the secant
numbers.

Holonomy. A function in the finite set of variables z is holonomic if and only if the vector space
spanned over C(z) by its derivatives is finite dimensional. We shall say that a symmetric function
f is holonomic (or D-finite) if and only if, as a function of the infinite set p’s, it is holonomic in
any finite combination of the p’s. Most standard holonomy closure properties carry over to this
definition provided infinite operations are carefully avoided.

Holonomic symmetric functions appear to be closed under inner product, scalar product with mild
restrictions, and certain forms of plethysm. The proofs present no difficulty but have to relie on
the closure of standard holonomic functions under Hadamard products (or diagonals), which is
Lipshitz’s “hard” theorem.

This concept constitutes the natural abstract setting in which results of the previous sections can
be cast.

Extensions. Gessel’s paper is very rich. It contains a discussion, based on Schur functions, of
Young tableaux of bounded height. (The Schur function s) is defined as

sy = det(hy;—iyj)i1<ij<ns

where we take h,, = 0 for n < 0.) It continues with symmetric functions in two sets (or more!) of
variables, with applications to longest increasing subsequences in permutations.
The following theorem is notable:



Holonomic Symmetric Functions 55

Theorem 3 (i). The exponential generating function of the Young tableauz of height at most k is
expressible in terms of a determinant of Bessel functions.

(ii). The doubly exponential generating function for permutations with longest increasing subse-
quence of length at most k is expressible in terms of a determinant of Bessel functions.

Note: It was proved by Regev using the hook formula of tableaux and the Selberg integral that
the number of permutations of n with longest increasing subsequence of length at most & satisfies
asymptotically
L;k) ~ k", 7k € R.

Direct asymptotics. Direct asymptotic approximations may well result from symmetric func-
tions, after it is realized how different variables induce weights of different orders of growth. An
example suggested by Gessel is the result of Everett and Stein: the number of n X n non—negative
matrices with every row and column sum k is (A7, h}), and it satisfies asymptotically

k (kn)! (k_1)2/2
ME) o k)!?ne( )22

n

—~
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