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Maxima in Convex Regions
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[summary by Pierre Nicodeme]

Suppose that C' is a bounded convex planar region. Let pi, ..., p, be n points drawn indepen-
dently identically distributed from the uniform distribution over C' and let ME be the number
of the points which are maximal. We present results showing how the asymptotic behaviour of
E (Mnc) depends on the geometry of C.

1 Introduction

We discuss E (Mfg), the expected number of maximal points (that is such that there is no other

point in the North-East quadrant from this point) in a set of n Independently Identically Distributed
(LL.D.) points drawn from the uniform distribution over some convex bounded planar region C.

The corresponding question for convex hulls has been well studied. Renyi and Sulanke [7, 8] proved
that if » points are chosen L.I.D. from C then, if C' is a convex polygon, the expected number of
convex hull points is ©(logn) while if C' is convex and has a doubly continuously differentiable

boundary the answer is © (n1/3) . Dwyer [4] provides a survey of more recent results.
The expected number of maxima has not been examined nearly as closely. It has been known for
many years [1] that if C'is the unit square then E (WIS) = O(logn). Recently Dwyer [4] proved that

E (Mfg) = 0O(y/n) when C' is a circle and also proved a general upper bound E (ZWS) = 0(y/n)

that is valid for any bounded convex planar region C (this result can also be found in Devroye [3]).

In this paper we study the asymptotics of E (1\47?) in detail. Note that the condition that C' be
convex is important. If it is abandoned then it can be shown that, for all functions f, f(n) <
n/log?n, and f slowly varying at infinity, there is some C such that E (Mfg) = O(f(n)) (see
[6] for details). If C' is constrained to be convex the situation is very different. We show in this

paper that for convex C either E (1\/[7?) =0(y/n)orE (Mfg) = O (log n) ; nothing between these

two functions is possible. We also give sufficient conditions for E (Mfg) = 0(1) and E (JWS) =
O(logn).

The rest of the paper will use the following notation: if p = (p.z, p.y) and ¢ = (¢.z, ¢.y) are planar
points we say that p dominates ¢ if p.x > q.x and p.y > ¢.y. If S = {py, ..., pa} is a set of points
we say that p is mazimalin 5 if there is no ¢ € 9, ¢ # p, such that ¢ dominates p. We set

MAX(S) ={p : pis maximal in S}.
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14 Part I. Combinatorial Models

See Figures 1 (a), (b) and (c). Suppose C is a bounded planar region. Let S = {py, ..., p,} be
a set of n points drawn LLD. from the uniform distribution over C. Let MY = [MAX(S)| be the

number of maximal points in 5. We will study E (Mfg) , the expected number of maximal points.

We will also look at the outer layer of 5, the set of all p € S such that one of the four quadrants
of the Cartesian axes centered at p contains no point in S (see [3] for more details). A set’s outer
layer always contains the set’s convex hull. We define O L(5) to be the outer layer points of S and
OLY = |OL(S)| to be the number of such points.

2 Results

In what follows we will always assume that € is a closed region. We do this to ensure that C
contains its boundary, dC' : this assumption makes our proofs slightly simpler. Notice though that
the assumption is not restrictive. If C' is any bounded convex region then E (]WS) =F (Mfg)

because a point chosen from the uniform distribution over C' is in dC' with probability zero. It thus
suffices to analyze E (1\/[7?) for closed C. Our first theorem is

Theorem 1 (The Gap Theorem) Let C' be a planar convex region. We say that a point p € C
s an upper-right-hand-corner of C' if p dominales every point ¢ € C. The expected number of
mazima among n poinls chosen I.1.D. uniformly from C is qualitatively dependent upon whether C
has an upper-right-hand-corner:

o [fC does not have such a corner then E (Mfg) = 0(yv/n).

o [fC does have such a corner then E (]WS) = O(logn).

Note that for all convex C', E (Mfg) can not behave like a function asymptotically between log n
and y/n. Hence the name Gap Theorem, alluding to the gap between the two possible behaviours.

Example 1 Figures 1 (b), (c), (d), (f), and (h) all have upper-right-hand-corners and thus have
E (JVIS) = O(logn) : figures 1 (a), (e), and (g) don’t and so have E (ZWS) = O(yv/n).

Recall that OLS is the number of outer-layer points among n points chosen I.1.D. uniformly from C. Theorem
1 can be used to say quite a lot about the expected number of outer layer points.

Corollary 1 Let C be a planar convezr region. If C' is a rectangle with sides parallel to the Cartesian azes

then E (OLS) = ©(logn). Otherwise E (OLS) = O(y/n).
Example 2 In Figure 1, (c) has OLS = O(logn) while all of the other regions have OLS = ©(y/n).

Theorem 1 tells us that when C' does not have an upper-right-hand-corner then E (ﬂlg) = O(v/n).

When C' does have such a corner then all that we know is that E (Mfg) = O(logn). To derive
tighter bounds it is necessary to have better information about the tangents to the boundary of C
at the corner. We digress momentarily to introduce notation describing these tangents.
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Let C' be a convex region. If ' has an upper-right-hand-corner p then the boundary curve of C' as
it leaves p can be divided into two parts: one curve that goes down and the other that goes to the
left. We define two functions d(a) and I(a) :

d(a) = [ such that (p.z — §,p.y — @) is on the down curve,
l(a) = [ such that (p.z — a,p.y — () is on the left curve.

See Figure 2. Although these functions are not defined for all real a the convexity of C' ensures that
there is always some € > 0 such that both functions are well defined, convex and nondecreasing
in [0, €] with d(0) = I(0) = 0. Since the functions are convex their left and right derivatives exist
everywhere in the interval except for the undefined left derivative at 0 and the undefined right one
at e.

The down tangent to C' at p is the tangent to the down curve at p. The slope of this tangent line
is totally determined by the value of the right derivative d’,(0). If d’, (0) = 0 the tangent line is
vertical. Similarly, if /. (0) = 0 the left tangent line, the tangent to the left curve, is horizontal.
This is illustrated in Figure 2.

The next two theorems discuss the behaviour of E <ZW7?) when C' has an upper-right-hand-corner .

Theorem 2 Let C be a convez planar region with an upper-right-hand-corner p. If the down tangent
at p is not vertical and the left tangent al p is nol horizontal then E (JV[E) = 0O(1). Otherwise

E (M) =0(1).

Example 3 Figures 1 (b) and (f) have E (Mfg) = O(1); figures 1 (¢), (d) and (h) have E (Mfg) =
Q(1).
We now present a tight lower bound for many of the cases in which the left tangent is horizontal

and/or the down tangent is vertical.

Theorem 3 Let C' be a convex planar region with an upper-right-hand-corner p. Suppose further
that at least one of the two tangents to C at p fulfills the following (Lipschitz-like) conditions:

1. The down tangent is not vertical and there are positive constants § and ¢ such that l(a) <
1+6
ca' T,

2. The left tangent is not horizontal and there are positive constants 6 and ¢ such that d(a) <
146
carte,

3. There are positive constants § and ¢ such that d(a) < ca'?® and l(a) < cal*?.
Then E (1\/17?) = O(logn).

Condition (1) forces the left tangent to be horizontal and condition (2) forces the down tangent to
be vertical. The conditions of the theorem can be thought of as requiring not only the left (down)
tangent to be horizontal (vertical) but the curve leaving C' itself to be “almost” horizontal (vertical)
near p. These conditions might seem artificial but in practice are satisfied quite often. For example:

Example 4 As an application of Theorem 3 we find that if C' is a convex polygon with an upper-
right-hand-corner and a vertical down tangent and/or a horizontal left tangent at the corner then

E (NIS) = O(logn), e.g. Figures 1 (c¢) and (h) have E (NIS) = O(logn).

Combining this with Theorems 1 and 2 we find that if C' is a convex polygon then E (JLL?) can
have only one of three possible behaviours: ©(y/n), ©(logn), or O(1).
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3 Dual Results

Let C' be a planar region. Choose n points py, ..., p, LLD. from the uniform distribution over C.
Let MY be the number of these points that are maximal. If C is convex it is known that either

E (Mfg) = O(y/n) or E (IWS) = O(logn). We will show that, for general C, there is very little
that can be said, a priori, about E (1\/17?) . More specifically we will show that if g is a member of a

large class of monotonic functions then there is a region C' such that E (NIS) = O(g(n)). This class

contains all functions with regular variation and (i) exponent less than 1 or (ii) exponent equal to
1 and n/g(n) > In® n for some B > 1. For example, all functions of the form gn)=n*0<a<1l,
or g(n) = In’ n, B > 0 satisfy condition (i) while all functions of the form g(n) = nlnlnn/In®n,
B > 1 satisfy (ii). The class also contains nondecreasing functions like g(n) = In* n. The results in
this paper remain valid in higher dimensions.

3.1 Finding a planar region corresponding to “good” monotonic functions

Definition 1 A positive (not necessarily) monotone function L defined on (0, ) is slowly varying
at infinity if and only if, for all x > 0
L(zt)
imoo L(L)

Definition 2 A function U defined on (0,00) is regularly varying at infinity with exponent p if
and only if it is of the form x°L(x) where L is slowly varying.

As an example the function In? n varies slowly at infinity so the function /7 In? n varies regularly at
infinity with exponent 1/2. Similarly, the function 1/1n? n varies slowly at infinity so the function
n/In? n varies regularly at infinity with exponent 1.

We now state our main result.

Theorem 4 Let g be a continuous, monotonically increasing almost everywhere differentiable func-
tion from (0,00) onto itself. Furthermore, suppose that g is regularly varying with exponent p and
either (i) p < 1 or (ii) p =1 and z/g(x) > In® & for some B > 1. Then there is some planar region
C' such that for n poinls py, ..., p, chosen L.1.D. uniformly from C the expected number of the
points that are mazimal is ©(g(n)) :

E(IMAX ({p1; ..., pn})|) = O(g(n)).

Very large classes of functions ¢ satisfy the conditions of Theorem 4. Some examples:
1. g(z) = z® where a < 1.
2. More generally, g(z) = 2%e"” 107z where 0 < a < 1,0<fG<1land~vy >0.
3. g(z) = ™ (z) the m’th iterated logarithm: In(®)(z) = z, "+ (z) = In (lll(m)(l‘)) .

4. g(z) = % where 3 > 1.
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Examples 1, 2, and 3 satisfy condition (i); example 4 satisfies condition (ii). The theorem therefore
tells us that for each of these g-s there is some C' such that E (MIS) = 0(g(n)).

A theorem due to Feller [5, page 281], giving the asymptotics of the truncated moments of regularly
varying functions, allows us to show that if g satisfies the conditions of Theorem 4 then

> (=): e

i>g(n

We demonstrate then the following theorem:

Theorem 5 Let g be a continuous monotonically increasing function from (0,00) into itself with
g(z) < z and lim,_, g(x) = 0o. Use g~' to denote the functional inverse of g: g(g~(z)) =
g Yg(x)) = x. Suppose that g fulfills the following condition for all integers n > 0:

i>%(:n) g%(z) =0 (@) ' (2)

Then there exists a connecled planar region C' such thal, for n poinls py, ..., p, chosen LI D.
uniformly from C, the expected number of the points that are mazimal is O(g(n)) :

E (IMAX ({p1; .-, pn})|) = O(g(n)).

The demonstration uses the following lemma:

Lemma 1 Fiz d > 0 and let T be the triangle (Figure 3) with vertices (0,0), (d,0) and (2d,2d).
Choose n points py, ..., p, LLD. uniformly from T. Then

E (IMAX ({p1, ..., pa})|) < 2.

The demonstration proceeds in two parts, with the construction of two regions C' and C’.

Part 1: We construct an infinite sequence C; of smaller and smaller triangles of the type described
by the lemma (Figure 4) and define C' = |J; C;. We show then that when n points are chosen LL.D.
uniformly from C' = |J; C; then E (z\/lf) = 0(g(n)).

Part 2: We modify C to yield a connected region C’ such that E (1\47?/) = O(g(n)). It is this C’
that will satisfy the theorem. We need the following lemma:

Lemma 2 Let d > 0 and d' < 4d. Define T to be, as in Lemma 1, the triangle with vertices
(0,0), (d,0) and (2d,2d). Let R be the rectangle with vertices (0,0), (d,0), (0, —d') and (d,—d'). If
P1y - -y Pn are chosen LI.D. uniformly from T U R then

E(IMAX({p1, ..., pa})]) = O(1).
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The new region C’ (Figure 5) will be the union of an infinite number of regions of the type defined
by the lemma.

Construction of C' :

1. Set fi = 1/\/g~ (7).

2. Set vy =y1 =0 and for 2 > 1 set @; = x;_1 + 2f;_1 and y; = y;_1 — 2f;.

3. Define C] to be the triangle with vertices (0,0), (f1,0) and (2f1,2f1). For i > 1 define C to be
the triangle with vertices (z;4+2f;, yi+2fi), (#:—2fi—1,v:—2fi—1) and (z;+ fi— fi—1, ¥:—2 fi—1).

4. For ¢ > 0 define R; to be the rectangle with vertices (x4, v;), (zi+ fi, i), (zi+ fi, vi—2fi—2fi+1)
and (@i, 9; — 2fi — 2fi1)

5. Set C" = J; (CIUR;).

3.2 Higher Moments

The regions C' constructed in this section were carefully tailored so that E (ZWS) = O(g(n)) for
given monotonically increasing functions g. There is a rather remarkable theorem due to Devroye
[2] which, for p > 1, gives us the higher moments E ((ng)p). This theorem (more specifically the

remark 3 following the theorem) states that if E (1\/[7?) = 0O(g(n)) where g is nondecreasing then
E ((JMS)p) =0 ((E (Mfg))p) = 0 (gP(n)). Thus we know all of the higher moments of M.

As an example suppose C' was constructed so that E (JVIS) =0 (nl/S) . Then E ((Mfg)p) =
C] (np/3) for all p > 1.
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Figure 1: Figures (a), (b), and (c) each contain 10 points the maxima of which are marked by x-s;
(a) contains 5 maximal points, (b) 1 maximal point and (c) 3 maximal points. Figures (b), (c), (d),
(f) and (h) all have upper-right-hand-corners (marked with a large point); the other figures don’t
have a corner. Figures (c¢) and (d) have horizontal left tangents; figures (c¢) and (h) have vertical
down ones.

d(a) I(a)

Figure 2: C' has an upper-right-hand-corner p with a vertical down tangent at p and a non-horizontal
left one. The middle figure portrays d(a), the displacement of the down boundary curve from the
vertical line through p and the rightmost figure portrays /(a), the displacement between the left
boundary curve and the horizontal line through p.
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Figure 3: R(z,y) is the region containing all points in 7" that dominate (z,y). In the diagram
R(z,y) is the union of the two shaded regions. The darker of the two shaded regions (the small
triangle) has area 3 [y/2+1—y][2 — (y/2+ 1)] = 5[l — y/2]* so Area(R(z,y)) > T- y/2] .

Figure 4: The region C' = U;C; when g(z) = 2°/'2, g=(z) = 2'%/° and f; = i=%/5. Note that
points in different triangles are incomparable; if p € C; and ¢ € C; where 7 # j then p and ¢ are
incomparable.
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Figure 5: The region C’ = |J;(C! U R;) when g(z) = 2°/'2. We have emphasized C% and Rs by
giving them a dashed boundary. The shaded region is the triangle C's of the preceding figure. Note
how C5 C C%.
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