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The Asymptotic Behaviour of Coefficients of Large
Powers of Functions

Daniele Gardy
LRI, Orsay

[summary by Bruno Salvy]

The evaluation of the distribution of a sum of independent random variables, the study of asymp-
totic parameters of trees and forests are two examples of problems that require an asymptotic
estimate of the behaviour of [2]f%(z) when both n and d tend to infinity. In this talk, D. Gardy
surveys the literature and proves several new results.

The general philosophy in this domain is that the larger d is with respect to n, the easier it is to
compute an asymptotic estimate. For instance, if n is fixed and d tends to infinity then elementary
majorisations show that [27] f4(2) ~ [27]( fay 2% + fa, 2°1)%, where f,, and f,, are the first non-zero
coeflicients of f. On the other end of the scale, the problem with fixed d and n tending to infinity
is the general problem of asymptotic estimates of coeflicients of generating functions which has
received a lot of attention, and for which results are known in particular classes. The emphasis in
this talk is on the intermediate case, when both n and d tend to infinity.

1 The saddle-point method

The saddle-point method is the method of choice in this domain. We describe it in the general
case where it used to get an estimate of [2"]¢(z), and will then comment on the implications of
taking ¢(z) = f%(z) with d tending to infinity.

One starts from Cauchy’s theorem

n 1 (2)
[z"]o(2) = Syl ) dz,
where the contour contains the origin and no other singularity. A suitable contour is a circle through
a particular point called saddle-point, which is a root of the derivative of the integrand (see [10] for
a good intuitive justification of this):
¢'(p) _nt1
¢p) P

If everything goes well, there is such a point on the positive real axis, it is a maximum of the
integrand on the circle, locally the integrand behaves as a Gaussian and the other parts of the
integral are negligible. If p is the only maximum of f on the circle of radius p, h(z) = log ¢(z) —
(n+ 1)logz and h"(p) # 0 (sufficient conditions for this will be given below), then one can see
that (z) = h(p) + h"(p)u?/2 defines two functions u(z) analytic at z = p that do not vanish on

(1)
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the circle. By imposing further u'(p) > 0, there is only one such function and we can change the
variable in the integral, thus obtaining

1290(2) = ol [ O

-~ 2impnt!

Expanding 2'(u) as a power series and integrating term by term from —oo to co gives a full
asymptotic expansion:

T O p— () N— [1

2)
The computations needed by the saddle-point method are technical but not hard. The difficulty
lies in the justification of its use. If one only wants the first order saddle-point estimate, obtaining
this validity requires three steps: i) proving the existence of the saddle-point in a valid part of the
complex plane, i7) proving that the expansion of 2’'(u) is valid in a sufficiently large neighbourhood
of the saddle-point, i77) bounding h on the rest of the contour. A sufficient condition for i) and
iii) is that there exists a real positive function €(n) < 1 such that

(a.) |€p*h"(p)] — 00, n — oo

(b.) [RGB (pe?)| = o(h”(p)), uniformly for 0 < |0] < e.

pe

(c.) |p(pe?)| = o( ¢}(L/')')( )), uniformly for 7 > [0] > €.
/R (p

2 Known results

Considering a generating function ¢ with non negative real Taylor coefficients at the origin which
tends to infinity “rapidly enough” at its finite or infinite singularity, it is not difficult to show that
the saddle-point equation (1) has roots. Using the triangular inequality, one gets that one of the
saddle-points of smallest modulus is a real positive number, and that its modulus is less than the
radius of convergence of ¢. If, besides, the gcd of the indices of the non-zero coefficients of ¢ is 1,
then this saddle-point is the only one with this modulus.

What makes it hard to get a majorisation of ¢ on the circle of radius p (condition (c.) above) is
that when n tends to infinity, this circle can get close to singularities and other saddle-points of
the function. This happens for instance with ¢(z) = z + e,

When d is fixed, this problem is solved for large classes of functions (called “admissible”) either by
requiring the functions to satisfy more or less stringent conditions (see [6, 7, 9]), or by taking into
account the other contributions to the integral [12].

The effect of d tending to infinity when ¢ = f? is i) to increase the difference between the largest
value of f on the contour and the other ones, it) to make ¢ grow fast enough; both properties make
it easier to prove the validity of the saddle-point method. Thus with the following hypotheses:

H1: f has non negative real coefficients and ged{k | [z*]f(2) £ 0} = 1;

H2: 0 < a < d/n < b for some real a and b (depending on f);
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Daniels has proved in [2] that the saddle-point method applies. This result is reformulated and
slightly improved (without proof) in [5]°.
What makes hypothesis H1 very useful is the following lemma.

Lemma 1 Let f be a generaling function with radius of convergence R < oo. If [ salisfies H1,
then for any r < R, 0 — |f(re'?)| has a single mazimum in (—7,7), which is attained for 6 = 0.

This was proved by Daniels and probably many others before.

In another context, Meir and Moon have proved in [8] the applicability of the saddle-point method
to the coefficients of f¢ when f is solution to f(z) = z¢(f(x)), where ¢ satisfies H1 and ¢(0) = 1,
with the following restriction on d: d = an + A\y/n + 0(n1/2), « being possibly zero. Intuitively, the
reason for this is that the saddle-point method already applies when d = 1 (see [11]).

3 The case n = o(d)

This is the case studied by D. Gardy in this talk, following [3]. Then the smallest solution of (1)
obviously tends to zero, and one can even give an asymptotic estimate for p. All the computa-
tions then get simpler and particularly the determination of a domain in which the function is
“sufliciently” Gaussian. D. Gardy’s main theorem is the following.

Theorem 1 Let f satisfy H1 and n = o(d). Then (1) has a unique real positive root p, and
asymptotically

d
[2"]f4z) = p{%(l +0o(1)), n— .

The proof strategy is as follows:

1. first prove the existence of p by an intermediate value argument and compute an asymptotic
estimate by inversion:

_fO)n 1))
P= Tyt T O/

2. from this deduce an estimate for f*)(p) = f*)(0) + O(n/d) and

ph®(pe)

PH'(p) = n(1 4 On/d) + O(/m). =20

= 2+ 0(n/d) + O(0);

3. these estimates show that the function ¢(n) = n~1*1/* for any integer k > 1 satisfies conditions
(a.) and (b.), and a few extra computations with the help of Lemma 1 show that (¢.) is also

fulfilled.

D. Gardy then proceeds with the study of [2"]f¥(2)¢(2) with the same hypothesis on f and d and
a function % analytic and non-zero at the origin, to be specified. In this case, it is known that the
saddle-point method still works with the same saddle-point and the same function €(n) as before
provided that

®As it is stated, Good’s theorem (p.868) is wrong, a counter-example being [2"](1 + z)™.
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(d.) |1(pe®)| ~ ¥(p) uniformly for 0 < || < € or;

(d’.) uniformly for 0 < |f| < ¢, the following estimates hold:

() = o(/1(0)), ‘(%)

(e.) [¥(pe?)| = O(¥(p)) uniformly for € < |6] < 7;

¢/

s (pe’®) = o(h"(pe”));

and then the asymptotic estimate has to be multiplied by #(p). Conditions (d.) and (e.) are
obviously fulfilled if ¢ is an analytic function which does not depend on d or n, but more generally,
D. Gardy considers functions ¥ satisfying H1 and of the form

o(2) = lj[gi(Z)di7 di = o(d/v/n).

Since ¥(0) # 0, it is easy to see that (d’.) is then satisfied, and (e.) follows immediately from
Lemma 1.

Note. The sufficient conditions used in this summary are taken or derived from [1].
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