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[summary by Dominique Gouyou-Beauchamps]

Two approaches are presented for the enumeration according area of different classes of convex
polyominoes. The first approach is based on the concept of coins stacking. In the second
approach, the elementary decomposition of polyominoes leads, for each class, to a g-equation,
that is sometimes solvable.

Unit squares with vertices at integer points in the cartesian plane are called cells. A polyomino is
a finite connected union of cells such that the interior is also connected (no cut point). The area
of a polyomino is the number of cells, the perimeter is the length of the border. Polyominoes are
defined up to a translation. A column (resp. row) of a polyomino is the intersection between the
polyomino and any infinite vertical (resp. horizontal) strip of unit squares. A polyomino is said to
be column- (resp. row-) convez if all its columns (resp. rows) are connected. A convezr polyomino
is both row- and column-convex.

Let P a convex polyomino and Rect(P) be the smallest rectangle (considered as a convex polyomino)
containing P. The polyomino touches the border of Rect(P) along four connected segments. Each
of these segments has two extreme points and thus we introduce 8 points, as shown in Figure 1.
The Westmost (respectively Eastmost) of the points of P containing the South (respectively North)
border of Rect(P) is denoted by S(P) (respectively N(P)). Following counterclockwise the border
of P, one meets successively the above 8 canonical points in the order: S(P), S’(P), E(P), E'(P),
N(P), N'(P), W(P), W(P). The height and the length of the convex polyomino P are the height
and the length of the rectangle Rect(P) (see Figure 1). We can now define several important
subclasses of convex polyominoes. A parallelogram polyomino is a convex polyomino P such that
S(P)= W'(P) and N(P) = E'(P) (see Figure 2). A stack polyomino is a convex polyomino such
that S(P) = W/(P) and S'(P) = E(P) (see Figure 2). A Ferrers diagram is a convex polyomino
P such that N(P) = E'(P), S'(P) = E(P) and S(P) = W/(P) (see Figure 2). A directed convex
polyomino is a convex polyomino P such that N(P) = E'(P) (see Figure 2). Polyominoes are very
classical objects in combinatorics. Counting polyominoes according to their area or perimeter is a
major unsolved problem in combinatorics. The first authors interested in this subject were Read
[8] and Golomb [7]. Physicists have given several asymptotic results. They call animal a set of
points obtained by taking the centers of the cells of a polyomino. Giving a privileged direction for
the growth of an animal allows them to obtain generating functions (see Viennot [9] and references
therein). In theoretical computer science, Yuba and Hoshi [11] introduced directed polyominoes (or
animals) for a new method for key searching. They consider that a polyomino is a binary search
network structure.

The following sections give some enumeration results for different classes of polyominoes.
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Figure 1: A convex polyomino
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1 Counting convex polyominoes according to their length and

their height

Theorem 1 The generating function for the number p,, ,, of conver polyominoes having height m

and length n is:

me Py = l_gf_y for Ferrers diagrams,

zy(l—x)

> P Y = FR r— for stack polyominoes,
> P Y = M for parallelogram polyominoes,

Y ommn Pmn® Y = % for directed convex polyominoes (Chang and Lin [3]),

Yo Py = x5(1-3 —3y+3224+3y* + by —a2® — P —2?y—ay? —zy(z—y)?)

4I’2y2
e

for convex

polyominoes (Chang and Lin [3], Delest and Viennot [4]), where A = 1 — 2z — 2y — 2zy + 22 + y2.

2 Counting convex polyominoes according to their length, their

height and their area

Theorem 2 The generating function for the numbers [y, n 4, Smn,a 0f convexr polyominoes having

hetght m, length n and area a is:

z mqm

vanva fmvnva'rmynqa = ZmZI (ZT

m

for Ferrers diagrams,

m,m

P Smanal Y G = 31 (yqlﬂ# for stack polyominoes, where (a), = (1 —a)(1—aqg)(1 —

)m—l(yq)m
aq?)...(1 —aq") and (a)y = 1.

In [5] and [6], Delest and Fédou give the generating function for the number of parallelogram

polyominoes according to their length and their area.
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a directed convex polyomino a parallelogram polyomino

a stack polyomino a Ferrers diagram

Figure 2: Different classes of convex polyominoes

3 Stack polyominoes

Theorem 3 The generating function for the number s, ,, o of stack polyominoes having height m,
length n and area a is:

m,n,a _ zy'q _ zy™q™ T,
Zm,n,a Smn,a® Y G = Ele (yq)m—l (y‘J)m - anl (Iq)n n’
where

(@), = (1 —a)(1 - aq)(1 - aq?)...(1 - aq") and (a)y = 1,

e m n—m-—1
1%=1+E%%9$%W2mﬁlk] l k-1 ]’
q q

n n]! n—
L ] = m and ' =11+ ¢)(1+ ¢+ ¢*)...(1+ g+ ...+ ¢" ).
q

4 Parallelogram polyominoes

Theorem 4 The generating function for the number p,, , . of parallelogram polyominoes having
hetght m, length n and area a is:
n+1)

(c1)rang("d

n+1
—1)ynt1l,n ( 2 )
Coma Proma2™y"q" = yKt where N = ¥,50 SUEES and Ny = Sy S0

(Q)n—l(yq)n ’

(@), = (1—-a)(1—-aq)(1 - ag?)....1-aq"), n>1 and (a)o = 1.
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The proof uses the concept of heaps of pieces introduced by Viennot [10] (see also [2]).

Theorem 5 The generating function for the number py, . » o of parallelogram polyominoes having
height m, length n, area a and their first (or last) column of height h is:

n+1
N(zqh . _1\n ( 2 )
Y ma Phimna @™y = mthh% where, as in Theorem 4, N(z) = 3,5¢ %

5 Directed convex polyominoes

Theorem 6 The generaling function for the number d., ,, o of directed convex polyominoes having
hetght m, length n and area a is:

n+1)

n+1
L Ny _1)nang("? _iyrtigng("E)
S a7 = yPE where N = 5,50 SIS, Ny = Sy S0

n,n 2

T n— —-1)mz" (m+2)
and *NQ = yZnZQ (ﬁ Zm:20 (q()777,1(?‘/‘1777'-'-(i )n—m—l '

The fundamental idea of the proof is to split a directed convex polyomino into two simpler poly-
ominoes (see Figure 3).

6 Convex polyominoes

Theorem 7 The generaling function for the number ¢, . of conver polyominoes having height
m, length n and area a is:

2 N1+N2)N:
Z(.’E, Y, q) = Em,n,a Cm,n,a'r’nr ynqa = Qy% - 2yZ1 - Z2

where N, Ny and Ny are defined in Theorem 6 and where

11
7 g™ T My g1 _ My T T _ zy™q" (Tn)?
N3 =220 = g D= 2ognsm Gghnilenn 22 = 2n21 oglna 5ol

To=11 = 1; T, =2T, 1+ (Jan_l - 1)Tn—2)
AIO = 0, le = 1, M, = (1 + Yy — a:q”_l)ﬁwn_l — ’yﬂln_g,

M = —zy"lq", M = 22y" "Lt M, (zq™) if m > n.

The fundamental idea of the proof is to split a convex polyomino into three simpler polyominoes
as in [4]. With a bisection we obtain the following expression for Z(z,y, ¢):

m+2Tm Sﬂ’}m—TmSI‘m+12 mme2
Z(:E7y7Q):2yEm21y (T 3lro™) 2 (zg " —I_z:'m21¢_L

Ty
[(zq)m]?N (g™~ 1)N(xg™) (@) m—-1(za)m’

——
where 5(z) = 37,54 (ﬁ Ej:& W(@BJETW ’
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Figure 3: Decomposition of a directed convex polyomino

7 Functional equations

Theorem 8 The generating function P(l) = P(s,1,2,Y,q) = 3, 1 4 Puvymn,as 1’2" y"q* of par-
allelogram polyominoes, having height m, length n, area a, their last column of height v and their
first column of height v, satisfies the following equation:

P(t) = $1i%q + x(l_tq)t(ql_tyq)(P(l) - P(tq))

This equation can be easily solved. The solution for s = y = 1 gives a result of Delest and Fédou
[5] (enumeration according to area and number of columns) and for s = 1, 2 = y = 2%, gives a
result of Guttman (enumeration according to area and perimeter).

Theorem 9 The generating function Y (1) = Y(s,4,2,9,q) = 3, na Yuw,mn,aS 172"y q* of di-
rected convex polyominoes, having height m, length n, area a, their last column of height u and
their first column of height v, satisfies the following equations:

Y(t) = 11:9;?5(1 —I' tqu(t) —I_ %(Yr(l) - Yr(tq)) where T(t) = EmZQ (tyq)iflqggttiqu))

and also Y (s) = wslyq{ =22 + sygP(s) + £LY(1) + £555(Y (sq) - Y(1)).

styq 1—sq
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Theorem 10 The generating function Z(s) = Z(8,6,2,Y,¢) = 3 n.a Zuvmmn,as 12" y"q" of con-
vex polyominoes, having height m, length n, area a, their last column of height v and their first
column of height v, satisfies the following equation:

— 48 rs IS2 2
Z(s) = wstyqirs + SSYPCT(L,8) + 2syqY (1, 8) + 25 2'(1) + 7502 (Z(sq) = Z(1)).
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