4

Fourier Transforms over Semi-simple Algebras

François Bergeron UQAM, Montréal

[summary by Dominique Gouyou-Beauchamps]

1 Introduction

Given a finite group G, we study some aspects of probabilistic algorithms of the form:

r := 1

repeat

choose $g \in G$ with probability p(g)

r := r.g

until the probability distribution of r is close to uniform

where $p:G\longrightarrow [0,1]$ is a probability distribution on G. We are also interested in some questions such as the explicit computation of the probability of obtaining some element $g\in G$ after n iterations of the loop. This study is clearly equivalent to the computation of successive powers, in the group algebra $\mathcal{A}(G)$ of G, of $\alpha=\sum_{g\in G}p(g)g$. However these powers are often hard to calculate in a nice closed form.

Example 1: We have an *n*-tuple of bits $w \in \{0,1\}^n$. At time t = 1,2,3,..., we randomly choose one bit of w and we change the value of this bit $(0 \leftrightarrow 1)$. At time t, what is the probability that we obtain a given n-tuple $w_0 \in \{0,1\}^n$?

Example 2: We consider $G = \mathcal{S}_n$, the symmetric group, and we compute powers of $\frac{1}{2^n} \sum_{j=0}^n 1 \ 2...j$ $\sqcup \sqcup (j+1)(j+2)...n$ where $\sqcup \sqcup$ denotes the shuffle product. This problem has been considered by Diaconis in [1, 2].

Example 3: We can also consider powers of $\frac{1}{\binom{n}{2}} \sum_{i \neq j} (i,j)$ where (i,j) denotes the transposition that exchanges i and j.

All these formulas can be considered to give, in explicit form, a Fourier transform such as defined below.

Let \mathcal{A} be a semi-simple commutative algebra (i.e. having a basis of orthogonal idempotents), and let $B = v_1, v_2, ..., v_n$ be some fixed (linear) basis for the subalgebra \mathcal{B} of \mathcal{A} , spanned by the complete set of primitive idempotents $e_1, e_2, ..., e_n$ of \mathcal{A} . Recall that these idempotents are such that

$$e_k e_j = \begin{cases} e_k & \text{if } k = j \\ 0 & \text{otherwise} \end{cases}$$
 and $\sum_{k=1}^n e_k = 1$.

Moreover, none of them can be written as the sum of two orthogonal idempotents. The Fourier transform \hat{f} (with respect to B) of $f = \sum_k f_k v_k \in \mathcal{B}$ is defined to be the vector $(\hat{f}_1, \hat{f}_2, ..., \hat{f}_n)$ of coordinates of f in this canonical basis $(e_k)_{1 \leq k \leq n}$

$$f = \sum_{k=1}^{n} \hat{f}_k e_k.$$

And the powers of f can be written

$$f^N = \sum_{k=1}^n \hat{f}_k^N e_k.$$

2 Example 1

Let \mathcal{B} be the center C(G) of the group algebra of a finite group G. The basis B is chosen to be the set of conjugacy classes in G

$$c_{\rho} = \sum_{g \in c(\rho)} g,$$

where $c(\rho) = \{h^{-1}\rho h \mid h \in G\}$ and $\rho \in G$.

Then the canonical idempotents are essentially given by the characters χ_{ρ} of irreducible representations ρ of G, considered as elements of the group algebra

$$e_{\rho} = \frac{\chi_{\rho}(1)}{|G|} \sum_{g \in G} \chi_{\rho}(g^{-1})g.$$

If $G = S_n$, a conjugacy class is a partition of the integer n because two permutations are in the same class if and only if they have the same cycle decomposition.

If $G = \langle x \rangle$, the cyclic group of order n generated by x ($x^n \equiv 1$), since the group is abelian, any element of the group algebra of $\langle x \rangle$

$$f(x) = \sum_{k=0}^{n-1} f_k x^k,$$

is an element of the center $C(\langle x \rangle)$. The group algebra can be seen as $\mathcal{A} = \mathbb{C}[x]/\langle x^n - 1 \rangle$. Moreover the irreducible characters give, in this case, the following idempotents

$$e_j = \frac{1}{n} \sum_{k=0}^{n-1} e^{-2ikj\pi/n} x^k,$$

for $0 \le j \le n-1$. One concludes that

$$f(x) = \sum_{j=0}^{n-1} \hat{f}_j e_j,$$

where

$$\hat{f}_j = \frac{1}{n} \sum_{k=0}^{n-1} f^k e^{-2i(n-k)j\pi/n}$$

$$=\frac{1}{n}f(q^j).$$

This is the traditional definition of the discrete Fourier Transform.

3 Example 2

The semi-simple algebras considered in this example are subalgebras of the group algebra of finite Coxeter groups. As a guiding example, let us consider the semi-simple subalgebra $\Gamma[A_{n-1}] = \Gamma[S_n]$ of the symmetric group spanned by the linearly independent descent classes

$$D_k = \sum_{d(\sigma)=k} \sigma,$$

where $0 \le k \le n-1$ and $d(\sigma) = \operatorname{Card}\{1 \le i \le n-1 \mid \sigma(i) > \sigma(i+1)\}\ (\text{cf [5]})$. Now, in [4] A. Garsia gives a beautiful explicit formula

$$\sum_{k=1}^{n} t^{k} e_{k} = \frac{1}{n!} \sum_{k=0}^{n-1} (t-k)^{(n)} D_{k},$$

relating the basis D_k and the canonical idempotents e_k of $\Gamma(\mathcal{S}_n)$. Here, $(t)^{(n)}$ stands for the rising factorial

$$(t)^{(n)} = t(t+1)(t+2)...(t+n-1).$$

This formula is closely related to the shuffle algebra and to a problem considered by Diaconis in [1, 2]. It is used in [2] to study the number of shuffles needed in order to really mix a deck of ncards. If we denote

$$\hat{\alpha} = \widehat{\sum_g \alpha_g g} = \sum_g \alpha_g g^{-1},$$

then $\widehat{D_{\leq i}} = w_1 \coprod w_2 \coprod ... \coprod w_i$ if $w_1 w_2 ... w_i = 1 2 ... n$. Example: $\sigma = 34681257, d(\sigma) = 1, \sigma^{-1} = 56127384 \in 1234 \coprod 5678$.

Applying Garsia's formula with t = 2 gives

$$\sum_{k=1}^{n} \frac{2^k}{2^n} \widehat{e_k} = \frac{1}{2^n} \sum_{k=0}^{n-1} 1 2 ... k \coprod (k+1) ... n.$$

The idempotent e_n is dominating in this formula because its coefficient is the greatest. But e_n is equal to $\sum_{\sigma \in \mathcal{S}_n} \frac{1}{n!} \sigma$ which is nothing else than the uniform distribution.

For $t \geq 1$, $\frac{1}{t^n} \sum_{k=1}^n t^k e_k = \sum_{k=0}^{n-1} \frac{(t-k)^{(n)}}{n!t^n} D_k$ is a probability distribution on \mathcal{S}_n . It follows immediately from the orthogonality of the e_k 's that

$$\left(\sum_{k=0}^{n-1} \frac{(t-k)^{(n)}}{n!t^n} D_k\right)^j = \left(\frac{1}{t^n} \sum_{k=1}^n t^k e_k\right)^j = \frac{1}{t^{jn}} \sum_{k=1}^n t^{jk} e_k = \sum_{k=0}^{n-1} \frac{(t^{j-k})^{(n)}}{n!t^{jn}} D_k.$$

In order to generalise this last computation, we extend Garsia's formula using an umbral argument. Thus we obtain

$$\sum_{k=1}^{n} t_k e_k = \sum_{k=0}^{n-1} \left(\sum_{j=1}^{n} \Psi_n(k,j) t_j \right) D_k,$$

where the $\Psi_n(k,j)$ are the coefficients appearing in the expression of the polynomial

$$\frac{1}{n!}(t-k)^{(n)} = \sum_{j=1}^{n} \Psi_n(k,j)t^j$$
.

Hence if Φ_n stands for the inverse of the matrix Ψ_n , then the Fourier transform, with respect to the basis $(D_k)_{0 \le k \le n-1}$, is

$$\widehat{s^k} = \sum_{j=1}^n \Phi_n(k,j) s^j.$$

Thus Φ_n is the matrix for the Fourier transform and Ψ_n that for the inverse Fourier transform. For example

$$\Phi_1 = \begin{bmatrix} 1 \end{bmatrix} \qquad \Phi_2 = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \qquad \Phi_3 = \begin{bmatrix} 1 & -2 & 1 \\ 1 & 0 & -1 \\ 1 & 4 & 1 \end{bmatrix} \qquad \Phi_4 = \begin{bmatrix} 1 & -3 & 3 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 3 & -3 & -1 \\ 1 & 11 & 11 & 1 \end{bmatrix}$$

$$\Phi_5 = \begin{bmatrix} 1 & -4 & 6 & -4 & 1 \\ 1 & -2 & 0 & 2 & -1 \\ 1 & 2 & -6 & 2 & 1 \\ 1 & 10 & 0 & -10 & -1 \\ 1 & 26 & 66 & 26 & 1 \end{bmatrix} \qquad \Phi_6 = \begin{bmatrix} 1 & -5 & 10 & -10 & 5 & -1 \\ 1 & -3 & 2 & 2 & -3 & 1 \\ 1 & 1 & -8 & 8 & -1 & -1 \\ 1 & 9 & -10 & -10 & 9 & 1 \\ 1 & 25 & 40 & -40 & -25 & -1 \\ 1 & 57 & 302 & 302 & 57 & 1 \end{bmatrix}.$$

The last row of these matrices is readily seen to be given by the coefficients of the Eulerian polynomials

$$\mathbf{A}_n(x) = \sum_{\sigma \in \mathcal{S}_n} x^{d(\sigma)},$$

hence

$$\Phi_n(n,k) = \operatorname{Card} \{ \sigma \in \mathcal{S}_n \mid d(\sigma) = k \}.$$

In general the entries of j^{th} row of Φ_n are the coefficients of $(1-x)^{(n-j)}\mathbf{A}_j(x)$.

4 Example 3

Similar consideration can be made in the context of the group algebra of the hyperoctahedral group (\mathcal{B}_n in the Coxeter's classification), if one considers the semi-simple subalgebra $\Gamma[\mathcal{B}_n]$ of the symmetric group spanned by the linearly independent descent classes

$$D_k = \sum_{d(\sigma)=k} \sigma,$$

where $0 \le k \le n$ and $d(\sigma) = \operatorname{Card}\{1 \le i \le n-1 \mid \sigma(i) > \sigma(i+1)\}.$

Recall that elements of \mathcal{B}_n are signed permutations and that for sake of convenience one can set $\sigma(0) = 0$. It was shown in [3] that there is in this context a Garsia like formula

$$\sum_{k=0}^{n} t^{k} e_{k} = \frac{1}{2^{n} n!} \sum_{k=0}^{n} (t - 2k)^{((n))} D_{k},$$

relating the basis D_k and the canonical idempotents e_k of $\Gamma(\mathcal{B}_n)$. Here, $(t)^{(n)}$ stands for the double rising factorial

$$(t)^{((n))} = (t+1)(t+3)...(t+2n-1).$$

As in the previous case, the last row of the matrices for the Fourier transform is readily seen to be given by the coefficients of the hyperoctahedral descent polynomials

$$\mathbf{B}_n(x) = \sum_{\sigma \in \mathcal{B}_n} x^{d(\sigma)},$$

and the entries of j^{th} row of Φ_n are the coefficients of $(1-x)^{(n-j)}\mathbf{B}_j(x)$. It is easy to verify that the polynomials $\mathbf{B}_n(x)$ satisfy the following recurrence

$$\mathbf{B}_{n+1}(x) = (1+x)\mathbf{B}_n(x) + 2xn\mathbf{B}_n(x) + (2x-2x^2)\frac{d}{dx}\mathbf{B}_n(x),$$

hence that their exponential generating function is

$$\sum_{n\geq 0} \mathbf{B}_n(x) \frac{u^n}{n!} = \frac{(1-x)e^{u(1-x)}}{1-xe^{2u(1-x)}}.$$

References

- [1] D. Aldous and P. Diaconis. Shuffling cards ans stopping times. American Mathematical Monthly, 93:333-348, 1986.
- [2] D. Bayer and P. Diaconis. Trailing the dovetail shuffle to its lair. Technical Report 2, Dept. of Statistics, Stanford University, 1990.
- [3] F. Bergeron and N. Bergeron. Orthogonal idempotents in the descent algebra of B_n . Journal of Pure and Applied Algebra, accepted in 1991.
- [4] A. Garsia. Combinatorics of the free Lie algebra and the symmetric group. In P. H. Rabinowitz and E. Zehnder, editors, Research papers published in honor of Jurgen Moser's 60th birthday. Academic Press, 1990.
- [5] A. Garsia and C. Reutenauer. A decomposition of Solomon's descent algebras. *Advances in Mathematics*, 77(2):189-262, 1989.