30

Probabilistic Primality Testing

A. Oliver L. Atkin
University of Illinois, Chicago

[summary by François Morain]

The aim of this talk is to give a strong probabilistic pseudoprime test that recognises a maximal number of composite numbers as fast as possible. As a by-product, it is shown how to get “free” square-roots of certain elements of \(\mathbb{Z}/p\mathbb{Z} \).

1 Introduction

The prototype of pseudoprime tests is Fermat’s theorem: If \(p \) is a prime and \(a \) an integer prime to \(p \), then

\[
a^{p-1} \equiv 1 \mod p.
\]

A pseudoprime to base \(a \) (psp-a) is a composite number \(N \) such that

\[
a^{N-1} \equiv 1 \mod N.
\]

For all \(a \), there exists an infinite number of psp-a. Moreover, there are numbers \(N \) such that \(N \) is a psp-a for all \(a \). (These numbers are called Carmichael numbers.) A refinement of this test consists in writing \(N = 1 + N_0 2^k \) with \(N_0 \) odd and

\[
a^{N-1} - 1 = (a^{N_0} - 1)(a^{N_0} + 1)(a^{2N_0} + 1) \cdots (a^{2^{k-1}N_0} + 1).
\]

If \(N \) is prime, it divides the left-hand side and so must divide one of the numbers on the right hand side. If \(N \) is composite and divides one of the numbers on the right, then \(N \) is called a strong pseudoprime to base \(a \) (spsp-a). As for psp-a’s, there is an infinite number of spsp-a.

A classical way of proving the primality of \(N \) is to test whether \(N \) is spsp-2 (say) and then rely on some more sophisticated algorithm to finish the proof [3, 1]. In certain cases, however, one might want to be as confident as possible that \(N \) is prime, without using the above-mentioned methods. Typically, one wants a test whose running time is at most five times that of a modular exponentiation with the lowest error probability possible.

2 \(q \)-strong pseudoprimes

One way of achieving this is to find small factors of \(N - 1 \):

\[
N - 1 = q^t N_0
\]

with \(q \) a “small” prime and \(N_0 \) prime to \(q \). For a given \(a \), put

\[
b \equiv a^{N_0} \mod N.
\]
If \(b \equiv 1 \mod N \), one chooses another \(a \) and try again. Otherwise, there exists a value of \(i \) such that
\[
b^{q^{i-1}} \not\equiv 1 \mod N
\]
but
\[
b^{q^i} \equiv 1 \mod N.
\]
Put \(B = b^{q^{i-1}} \). If \(N \) is prime, then
\[
N \mid B^q - 1 = (B - 1)(B^{q-1} + B^{q-2} + \ldots + 1)
\]
and therefore
\[
N \mid B^{q-1} + B^{q-2} + \ldots + 1.
\]
If \(N \) is composite and the preceding relation is true, then \(N \) is called a \(q \)-strong pseudoprime to base \(a \) (\(\text{spsp}_q(a) \)). In that case, \(B \) behaves like a \(q \)-th root of unity modulo \(N \). We shall use this fact in section 4.

3 Lucas sequences

Let \(A \) be a small rational (i.e., \(A = u/v \) with \(u \) and \(v \) small) such that \(\Delta = A^2 - 4 \) is a quadratic non-residue modulo \(N \). Let \(\alpha \) and \(\beta \) be the two distinct roots of
\[
X^2 - AX + 1 = 0
\]
and put \(S_n = \alpha^n + \beta^n = \alpha^n + \alpha^{-n} \). (Note that computing \(S_n \) can be done in \(O(\log n) \) steps using the relations
\[
S_{2n} = S_n^2 - 2 \mod N, \quad S_{2n+1} = \frac{S_{2n+2} + S_{2n}}{A} \mod N.
\]
If \(N \) is a prime, and since \(\Delta \) is a quadratic non-residue, \(\alpha \) is in the Galois field \(F = \mathbb{GF}(N^2) \). It is well known (see [2, 3]) that if \(N \) is prime, then \(\alpha \) is of order \(N + 1 \) or equivalently
\[
S_{N+1} \equiv 2 \mod N.
\]

A composite number \(N \) satisfying this relation is called a Lucas-pseudoprime for parameter \(A \) (\(\text{Lpsp-A} \)). More generally, writing \(N + 1 = q^k N_0 \), one can define the notion of \(q \) Lucas pseudoprimes. By analogy with the preceding section, we would like \(\alpha^{(N+1)/2} = -1 \). For this, we write \(\alpha = \gamma^2 \) in \(F \). The norm of \(\gamma \) is \(\gamma^{N+1} = \alpha^{(N+1)/2} = -1 \). Then the minimal polynomial of \(\gamma \) is
\[
X^2 - cX - 1
\]
with \(c \) in \(\mathbb{Z}/N\mathbb{Z} \). We write:
\[
\gamma^2 - c\gamma - 1 = 0
\]
or
\[
(\gamma^2 - 1)^2 = c^2 \gamma^2
\]
which reads
\[
(\alpha - 1)^2 = c^2 \alpha
\]
yielding
\[\alpha^2 + 1 - 2\alpha = c^2 \alpha \]
and using the fact that \(\alpha^2 + 1 = A\alpha \), one gets
\[A - 2 = c^2 \]
in \(\mathbb{Z}/N\mathbb{Z} \). This means that \(A - 2 \) is a quadratic residue modulo \(N \).

4 Getting free square-roots modulo \(p \)

Let \(p \) be an odd prime. The aim of this section is to show how to find square-roots modulo \(p \) as by-products of other calculations.

4.1 By-products of \(q \)-strong tests

Let \(a \) be such that \(a \) is a square modulo \(p \). Then, if \(p \equiv 3 \mod 4 \), a square-root of \(a \) is given by
\[a^{(p+1)/4} \mod p. \]

If \(p \equiv 5 \mod 8 \), then \(2 \) is a non-residue modulo \(p \), therefore \(2a \) is not a square. Put
\[\xi = (2a)^{(p-5)/8} \mod p. \]

Then
\[\xi^2(2a) \equiv (2a)^{(p-1)/4} \equiv i \mod p \]
where \(i^2 \equiv (2a)^{(p-1)/2} \equiv -1 \). We also deduce that \(\xi a(i - 1) \) is a square-root of \(a \) since
\[(\xi a(i - 1))^2 = \xi^2 a^2(i - 1)^2 \equiv a \mod p. \]

In this process, we were able to identify \(\sqrt{-1} \mod p \) as well as \(\sqrt{a} \mod p \).

Another way of getting square-roots uses Gaussian periods. For example, take \(q = 7 \). Let \(\zeta \) be a primitive \(q \)-th root of unity (over \(\mathbb{C} \)). Define the two periods:
\[\eta_0 = \sum \zeta^R, \quad \eta_1 = \sum \zeta^N \]
where \(R \) runs through the quadratic residues modulo \(q \), and \(N \) through the non-residues. Then, it is well known (see e.g., [4]) that
\[\eta_0 + \eta_1 = -1, \quad \eta_0 - \eta_1 = 2\eta_0 + 1 = \sqrt{(-1)^{(p-1)/2}q}. \]

Coming back to our problem, we replace \(\zeta \) by \(B \), a root of unity modulo \(p \) (i.e., a number \(B \neq 1 \) such that \(B^p \equiv 1 \mod p \)), and get that
\[2(B + B^2 + B^4) + 1 \equiv \sqrt{-7} \mod p. \]
4.2 By-products of Lucas sequences

We use the notations of section 2. In particular, \(A - 2 \) is not a square modulo \(p \) and \(\alpha^{(p+1)/2} = -1 \) in \(F = \mathbb{Z}/p\mathbb{Z} \) of \((x^2 - AX + 1) \).

Suppose first that \(p \equiv 3 \mod 4 \). Then

\[
S_{(p+1)/4} \equiv 0 \mod p
\]
since \(S_{(p+1)/2} = -2 = S_{(p+1)/4} - 2 \). Moreover

\[
S_{(p+5)/4} \equiv \sqrt{4-A^2}.
\]

We check this with

\[
S_{(p+5)/4}^2 = (\alpha^{(p+5)/4} + \alpha^{-(p+5)/4})^2 = \alpha^{(p+5)/2} + \alpha^{-(p+5)/2} + 2 = (-1)\alpha^2 + (-1)\alpha^{-2} + 2 = -(\alpha - 1/\alpha)^2 = 4 - A^2
\]

using the fact that \(\alpha^{(p+1)/2} = -1 \).

If \(p \equiv 7 \mod 8 \), then

\[
S_{(p+1)/8} \equiv \sqrt{2} \mod p
\]

using the fact that \(S_{(p+1)/4} = 0 = S_{(p+1)/8} - 2 \).

If \(p \equiv 3 \mod 8 \), we may write

\[
-2S_{(p+5)/8} = -2(\alpha^{(p+5)/4} + \alpha^{-(p+5)/4} + 2) = -2(\sqrt{4-A^2} + 2)
\]

so that

\[
\sqrt{-2S_{(p+5)/8}} = \sqrt{A-2} - \sqrt{-A-2}.
\]

When \(p \equiv 1 \mod 4 \), we can show that

\[
S_{(p-1)/4} \equiv \sqrt{2-A}.
\]

This comes from the fact that:

\[
S_{(p-1)/4}^2 = \alpha^{(p-1)/2} + \alpha^{-(p-1)/2} + 2 = \alpha^{-1} \alpha^{(p+1)/2} + \alpha^{-(p+1)/2} + 2 = -(\alpha + 1/\alpha) + 2 = 2 - A.
\]

We can also use Gaussian periods. Let \(q \) be an odd prime and

\[
\theta = \alpha^{(p+1)/q}
\]

be a primitive \(q \)-th root of unity in \(F \) (i.e., \(\theta \neq 1 \)). Then, using \(\eta_0 \) and \(\eta_1 \), one has:

\[
\eta_0 - \eta_1 = \sqrt{(1\theta^{-1})^2}.
\]

We must distinguish two cases. The first one corresponds to \(q \equiv 1 \mod 4 \). Then \(\eta_0 \) is in \(\mathbb{Z}/p\mathbb{Z} \) and we get \(\sqrt{q} \) as usual. For example, taking \(q = 5 \), one has

\[
\eta_0 = \theta + \theta^4 = \theta + \theta^{-1} = S_{(p+1)/q}.
\]

On the other hand, when \(q \equiv 3 \mod 4 \), \(\eta_0 \) is in \(F \). Put \(\omega = \sqrt{\Delta} = \alpha - 1/\alpha \). Then \(\omega(\eta_0 - \eta_1) \) is in \(\mathbb{Z}/p\mathbb{Z} \). For instance, if \(q = 7 \), one has

\[
\omega(\eta_0 - \eta_1) = \omega(\theta - \theta^{-1}) + \omega(\theta^2 - \theta^{-2}) + \omega(\theta^4 - \theta^{-4}).
\]

We then use the fact that

\[
\omega(\theta^i - \theta^{-i}) = (\alpha - 1/\alpha) (\theta^i - \theta^{-i}) = \alpha \theta^i + \alpha^{-1} \theta^{-i} - (\alpha \theta^i + \alpha^{-1} \theta^i) = S_{(p+1)/q+1} - S_{(p+1)/q-1}.
\]
5 PseudoprIMALITY AND SQUARE-ROOTS

Suppose we suspect that a given odd integer \(N \) is prime. Then, we might try to get square-roots of some numbers. If we can find two square-roots of a number \(Z \) that are different, we can factor \(N \), since

\[
X_1^2 \equiv X_2^2 \mod N \Rightarrow \text{gcd}(X_1 - X_2, N) \mid N.
\]

For instance, if \(N \equiv 3 \mod 4 \) is a spsp\(_q\)\((a)\) and a Lsp\(_r\)-A, one can try to find \(A \) such that \(4 - A^2 \) is a quadratic residue modulo \(N \). Then, we compute \(\sqrt{4 - A^2} \) in two ways, using \(A^{(N+1)/4} \) and \(S_{(N+5)/4} \) and try to factor \(N \) with it.

There is another application of this. The ECPP algorithm [1] requires the computation of square-roots of small numbers modulo \(N \), \(N \) a probable prime. One can use the same ideas to get these square-roots as free, using the same method and thus speeding the whole process.

References

