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[summary by Francois Morain]

he aim of this talk is to give a strong probabilistic pseudoprimality test that recognises a maximal
number of composite numbers as fast as possible. As a by-product, it is shown how to get “free”
square-roots of certain elements of Z/pZ.

1 Introduction

The prototype of pseudoprime tests is Fermat’s theorem: If p is a prime and a an integer prime to

p, then

a?~! = 1 mod p.

A pseudoprime to base a (psp-a) is a composite number N such that

aV¥~' =1 mod N.

For all a, there exists an infinite number of psp-a. Moreover, there are numbers NV such that N is a
psp-a for all a. (These numbers are called Carmichael numbers.) A refinement of this test consists
in writing N = 1 4+ N2 with Ny odd and

N1 = (@ 1) 1)@ 1) (TN g ),

If N is prime, it divides the left-hand side and so must divide one of the numbers on the right
hand side. If N is composite and divides one of the numbers on the right, then N is called a strong
pseudoprime to base a (spsp-a). As for psp-a’s, there is an infinite number of spsp-a.

A classical way of proving the primality of N is to test whether N is spsp-2 (say) and then rely
on some more sophisticated algorithm to finish the proof [3, 1]. In certain cases, however, one
might want to be as confident as possible that N is prime, without using the above-mentioned
methods. Typically, one wants a test whose running time is at most five times that of a modular
exponentiation with the lowest error probability possible.

2 g¢-strong pseudoprimes

One way of achieving this is to find small factors of N — 1:
N —1=¢'Ny
with ¢ a “small” prime and Ny prime to ¢. For a given «a, put

b= a™° mod N.

165



166 Part V. Computational Number Theory

If b=1mod N, one chooses another ¢ and try again. Otherwise, there exists a value of ¢ such that
b7 Z 1 mod N

but ‘
b7 = 1 mod N.

Put B = b7

—1

. If N is prime, then
N|B'—1=(B-1)(B" ' +BI™ 2 4...41)

and therefore

N[BT '+ B2 4. 41,

If N is composite and the preceding relation is true, then N is called a ¢-strong pseudoprime to
base a (spspy(a)). In that case, B behaves like a ¢-th root of unity modulo N. We shall use this
fact in section 4.

3 Lucas sequences

Let A be a small rational (i.e., A = u/v with v and v small) such that A = A% — 4 is a quadratic
non-residue modulo N. Let a and  be the two distinct roots of

X2 AX+1=0

and put 9, = a” 4+ 5" = o™ + a™". (Note that computing 5,, can be done in O(logn) steps using
the relations

Sont+2 + San
A

If N is a prime, and since A is a quadratic non-residue, « is in the Galois field F = GF(N?%). Tt is
well known (see [2, 3]) that if N is prime, then « is of order N + 1 or equivalently

Sap = S;‘)L —2mod N, Sopq1 = mod N.)

SN+1 =2 mod N.

A composite number N satisfying this relation is called a Lucas-pseudoprime for parameter A
(Lpsp-A). More generally, writing N +1 = ¢' Ny, one can define the notion of ¢ Lucas pseudoprimes.

By analogy with the preceding section, we would like aN+1)/2 — _1_ For this, we write o = 7% in
F. The norm of 7 is vVt = aV+1)/2 = _1. Then the minimal polynomial of v is
X?—eX -1

with ¢ in Z/NZ. We write:
ey —-1=0

or
(72 _ 1)2 — 6272
which reads
(a—1)* = cta
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yielding
a? +1—-2a= a

and using the fact that a? + 1 = Aa, one gets
A-2=¢

in Z/NZ. This means that A — 2 is a quadratic residue modulo N.

4 Getting free square-roots modulo p

Let p be an odd prime. The aim of this section is to show how to find square-roots modulo p as
by-products of other calculations.

4.1 By-products of g-strong tests

Let @ be such that @ is a square modulo p. Then, if p = 3 mod 4, a square-root of a is given by

a(Pt1/4 mod p.

If p = 5 mod 8, then 2 is a non-residue modulo p, therefore 2a is not a square. Put
€ = (2a)P72)/® mod p.

Then
£4(2a) = (2a)P"/* = i mod p

where i = (2a4)(P~1/2 = —1, We also deduce that £a(i — 1) is a square-root of a since
(€a(i—1))* = £2a*(i — 1)? = a mod p.

In this process, we were able to identify v/—1 mod p as well as \/a mod p.
Another way of getting square-roots uses Gaussian periods. For example, take ¢ = 7. Let { be a
primitive g-th root of unity (over C). Define the two periods:

o = ZCR7 = ZCN

where R runs through the quadratic residues modulo ¢, and A" through the non-residues. Then, it
is well known (see e.g., [4]) that

m+m=-1 np-—m=2np+l=, (_1)(q_1)/2‘1-

Coming back to our problem, we replace { by B, a root of unity modulo p (i.e., a number B # 1
such that B? = 1 mod p), and get that

2(B—|—B2 —|—B4)—|— 1=+v-7mod p.
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4.2 By-products of Lucas sequences

We use the notations of section 2. In particular, A — 2 is not a square modulo p and aPt1)/2 = _1
in F = GF(p?) ~ (2/pz)[X]/(X? - AX +1).
Suppose first that p = 3 mod 4. Then

S(p+1)/4 = 0mod p

2

since S(pp1)2 = —2 = S(p+1

)4~ 2. Moreover

S(p+5)/4 = \/m
We check this with
S(2p+5)/4 = (Pt o= (pH9)/4)2 — o (p+3)/2 4 o= (pH3)/2 | 9
= (-Da?+(-Da24+2=—(a—1/a)? =4 A?

using the fact that aPt1/2 = _1,
If p= 7 mod 8, then
Sp+1)/8 = V2 mod p
using the fact that 5(,41),4 =0= S(Qp+1)/8 - 2.
If p = 3 mod 8, we may write
_25(2p+5)/8 = _Q(Q(p+5)/4 +a—(P+3)/4 4 2) = —2(V4 - A2+ 2)
= —4-2/4- A2 = (VA2 - /A 2)?

so that

V=25,45s=VA-2-V-A-2.
When p = 1 mod 4, we can show that
S(p—l)/4 =V 2 — A.
This comes from the fact that:
S(Qp_l)/4 =P~ V/2 L o~-1)/2 L 9 — (1ot 1)/2 | o= (p+1)/2 L 9 — —(a+1/a)+2=2-A.
We can also use Gaussian periods. Let ¢ be an odd prime and
g = olpt1)/a

be a primitive ¢g-th root of unity in F' (i.e., # # 1). Then, using 79 and 7, one has:

Mo — 1T = y/(—l)(q—l)/Qq,

We must distinguish two cases. The first one corresponds to ¢ = 1 mod 4. Then 7 is in Z/pZ and
we get /¢ as usual. For example, taking ¢ = 5, one has

o = 6+ 6* =6 + 6! = S(p+1)/q.

On the other hand, when ¢ = 3 mod 4, 7 is in F. Put w = v/A = a — 1/a. Then w(ny — n1) is in
Z[pZ. For instance, if ¢ = 7, one has

wlno—m) =w(@—07") +w(@ —07%)+ w(6* — 7).
We then use the fact that
w(()i B G_i) = (o~ l/a)(Oi N O_i) =af + a6 - (ae_i + O‘_lei) = Si(p+1)/g+1 — Si(p+1)/g—1-
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5 Pseudoprimality and square-roots

Suppose we suspect that a given odd integer N is prime. Then, we might try to get square-roots
of some numbers. If we can find two square-roots of a number Z that are different, we can factor
N, since

X{=X7mod N = ged(X; — Xg, N) | N.

For instance, if N = 3 mod 4 is a spsp,(a) and a Lpsp-A, one can try to find A such that 4 — A?
is a quadratic residue modulo N. Then, we compute v/4 — A% in two ways, using AN+D/4 and
S(N+5)/4 and try to factor N with it.

There is another application of this. The ECPP algorithm [1] requires the computation of square-
roots of small numbers modulo N, N a probable prime. One can use the same ideas to get these
square-roots as free, using the same method and thus speeding the whole process.
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