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Abstract

In a common work1 with Jean-Pierre Ramis and Changgui Zhang,

we described an analogue of the Stokes phenomenon for linear

analytic complex q-difference equations and used it to get the

local analytic classification. If time permits, I will also show how it

was applied in a common work with J.-P. R. the Galois theory of

such equations.

1Accepted for publication by Astérisque; meanwhile, see URL
http://front.math.ucdavis.edu/0903.0853.
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Origin
The program of analytic classification of q-difference equations
was first proposed and realized by Birkhoff in 1913 in the context
of a unified treatment of the Riemann-Hilbert correspondence for
fuchsian differential, difference and q-difference equations. The
classification program was extended by Birkhoff and Guenter in
1941 for irregular equations, but never pursued:

“Up to the present time, the theory of linear q-difference equations has
lagged noticeably behind the sister theories of linear difference and
differential equations. In the opinion of the autors, the use of the
canonical system, as formulated above in a special case, is destined to
carry the theory of q-difference equations to a comparable degree of
completeness. This program includes in particular the complete theory
of convergence and divergence of formal series, the explicit
determination of the essential transcendental invariants (constants in
the canonical form), the inverse Riemann theory both for the
neighborhood of x = ∞ and in the complete plane (case of rational
coefficients), explicit integral representation of the solutions, and finally
the definition of q-sigma periodic matrices, so far defined essentially
only in the case n = 1. Because of its extensiveness this material cannot
be presented here.”

G.D. Birkhoff, 1941
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Generalities
General notations

q ∈ C, |q| > 1.
For f ∈ K := C({z}) or f ∈ K̂ := C((z)):

σqf (z) := f (qz).

A (complex analytic) linear q-difference equation writes:

f (qnz) + a1(z)f (qn−1z) + · · ·+ an(z)f (z) = 0,

where a1, . . . , an ∈ K , an 6= 0.

Encoding: Lf = 0,

where L := σnq + a1σ
n−1
q + · · ·+ an ∈ Dq,K ,

Dq,K := K
〈
σq, σ

−1
q

〉
, (Ore ring),

and a1, . . . , an ∈ K , an 6= 0.

Formal equation: replace K by K̂ .
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Generalities
Equations, systems, q-difference modules

By vectorialisation the q-difference equation Lf = 0 can be
turned into a q-difference system:

σqX = AX ,A ∈ GLn(K ), where X =

 f
...

σn−1
q f

 ,

then into a q-difference module

M = (E ,Φ), with E := Kn,Φ := ΦA : X 7→ A−1σqX .

(Compare with vector spaces equipped with a connection.)

Equivalently, M is a left Dq,K -module of finite length.

Formal equation: replace K by K̂ .
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Generalities
Analytic, formal classification

Morphisms from (Kn,ΦA) to (Kn,ΦB) correspond to
matrices F ∈ GLn(K ) such that (σqF )A = BF .
Thus, if Y = FX , then σqX = AX ⇒ σqY = BY .

Local analytic classification: we say that A ∼ B if there
exists a gauge transformation F ∈ GLn(K ) such that:

B = F [A] := (σqF )AF−1.

Formal classification: the same with F ∈ GLn(K̂ ).
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Generalities
Newton polygon (at 0)

The q-difference operator P has a Newton polygon at 0,
which consists in slopes µ1 < · · · < µk ∈ Q together with
their multiplicities r1, . . . , rk ∈ N∗. (Precise definition
omitted !)

By the cyclic vector lemma, any q-difference module can be
written M = Dq,K/Dq,KP.

Theorem and definition

The Newton polygon of M = Dq,K/Dq,KP depends only on
the formal isomorphism class of M.

Caution !
By vectorialisation, equation L system A q-difference
module M. By the cyclic vector lemma M = Dq,K/Dq,KP,
where P is “dual” to L: they have symetric Newton polygons
and opposite slopes.
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Generalities
Fundamental solutions, constants

One can prove that an analytic system σqX = AX ,
A ∈ GLn(K ) always has a fundamental solution:

X ∈ GLn(M(C∗, 0)),

i.e. uniform in a punctured neighborhood of 0.

Therefore, all uniform meromorphic solutions of σqX = AX
have the form X = XC , where C ∈ (M(C∗, 0)σq)n.
The field of constants:

M(C∗, 0)σq := {f ∈M(C∗, 0) |σqf = f }

can be identified with the field of elliptic functions M(Eq),

Eq := C∗/qZ ' C/(Z + Zτ), where e2iπτ = q.

(Identification through the map x 7→ z := e2iπx .)
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Generalities
Associated vector bundle

This is for analytic systems (over K ). One defines:

F
(0)
A :=

(C∗, 0)× Cn

(z ,X ) ∼ (qz ,A(z)X )
−→ (C∗, 0)

z ∼ qz
= Eq.

This is a holomorphic vector bundle over the complex torus
(or elliptic curve) Eq.

The sheaf of holomorphic solutions of σqX = AX near 0 is

canonically isomorphic to the sheaf of sections of F
(0)
A

A F
(0)
A is a “good” functor for classification and for Galois

theory (faithful, exact, ⊗-compatible).
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Slope filtration
Pure modules, equations, systems

A module with one slope only is called pure isoclinic.

Pure isoclinic modules of slope 0 are fuchsian modules. They
have the shape (Kn,ΦA), with A ∈ GLn(C). Their analytic
and formal classification (due to Birkhoff) are the same.

Pure isoclinic modules of slope µ ∈ Z have the shape
(Kn,ΦzµA), with A ∈ GLn(C). Their classification boils
down to the fuchsian case.

Pure isoclinic modules of nonintegral slope have been
classified by van der Put and Reversat in 2005.
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Slope filtration
The canonical filtration

Theorem

Any q-difference module over K admits a unique filtration

(M≤µ)µ∈Q such that each M(µ) :=
M≤µ
M<µ

is pure isoclinic of

slope µ. The filtration is functorial and gr : M  
⊕

M(µ) is
a faithful exact C-linear ⊗-compatible functor.

Theorem

Over K̂ , the filtration splits canonically. After formalization
(base change K̂ ⊗K −), gr becomes isomorphic to the identity
functor.

Note that, contrary to the second, the first theorem has no
equivalent in the case of differential equations: it is a
consequence of Adams lemma (existence of an analytic
factorisation for q-difference operators).
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Classification and graduation

A direct sum of pure isoclinic modules is called pure.

Corollary

For pure modules, formal and analytic classification are equiv-
alent. Formal classification of an analytic q-difference module
M amounts to classification (formal or analytic) of the pure
module grM.

We already know:

The formal classification,
i.e. classification of pure
q-difference modules.

We want to study:

The analytic classification
within a formal class, i.e.
with grM fixed.
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Irregular equations
Isoformal classes

The following definition is inspired by Babbitt and
Varadarajan “Local moduli for meromorphic differential
equations” (Astérisque 169-170).

Fix a pure module M0 := P1⊕· · ·⊕Pk , where P1, . . . ,Pk are
pure isoclinic with slopes µ1 < · · · < µk and ranks r1, . . . , rk .

Define F(M0) = F(P1, . . . ,Pk) as the quotient set of pairs
(M, u), where u : grM ' P1 ⊕ · · · ⊕ Pk , up to the
equivalence relation:

(M, u) ∼ (M ′, u′)⇐⇒ ∃f : M → M ′ : u = u′ ◦ grf .

Example

Two slopes, one level:

F(P1,P2) = Ext(P2,P1).



An analogue of
Stokes

phenomenon for
q-difference
equations

Jacques Sauloy

Generalities

Slopes

Classification

Irregular equations
The space of analytic classes

Theorem

One gets an affine space (actually, a scheme) of dimension:

dimF(P1, . . . ,Pk) =
∑

1≤i<j≤k
ri rj(µj − µi ).

(There is a q-Gevrey version.)

This dimension is equal to the irregularity of End(M0).

From now on,
the slopes will be assumed to be integral:

µ1, . . . , µk ∈ Z.
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Matricial description

A formal class is encoded by M0 = (Kn,ΦA0), with:

A0 :=


zµ1A1 . . . . . . . . . . . .
. . . . . . . . . 0 . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . zµk Ak

 .

An analytic class within F(M0) can then be represented by
M := (Kn,ΦA) with:

A = AU :=


zµ1A1 . . . . . . . . . . . .
. . . . . . . . . Ui ,j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . zµk Ak

 ,

for some U := (Ui ,j)1≤i<j≤k ∈
∏

1≤i<j≤k
Matri ,rj (K ).
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Birkhoff-Guenther normal form

Using q-Borel transforms one gets an explicit (algorithmic)
computation of Birkhoff-Guenther normal form:

Theorem

Each class in F(P1, . . . ,Pk) admits a unique representative
(Kn,ΦAU

) such that each block Ui ,j , 1 ≤ i < j ≤ k has
coefficients in

∑
µi≤`<µj

Cz`.

Example

If A0 :=

(
a 0
0 bz

)
, a, b ∈ C∗, then the normal form of

Au :=

(
a u
0 bz

)
, u ∈ K is

(
a Bq,1u(a/b)
0 bz

)
, where:

Bq,1
(∑

fnzn
)

=
∑ fn

qn(n−1)/2
zn.
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Formal isomorphism

Call G ⊂ GLn the subgroup of matrices:
Ir1 . . . . . . . . .
. . . . . . Fi ,j . . .
. . . 0 . . . . . .
0 . . . . . . Irk


For all A in the formal class A0, there is a unique F̂ ∈ G(K̂ )
such that F̂ [A0] = A; call it F̂A. Then:

A ∼ A′ ⇐⇒ F̂A′(F̂A)−1 ∈ G(K ).

We want to “sum” the divergent series F̂A

Example(
1 f
0 1

)
is an isomorphism from A0 to Au if, and only if,

bzσqf − af = u. This has a unique formal solution f̂u, and
Au ∼ Av ⇔ f̂u − f̂v ∈ K .
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q-adapted Poincaré asymptotics

There is a q-analogue of Poincaré asymptotics with the
following features:

Asymptotics for ODE

1. Dynamics is given by the
semi-group Σ := e]−∞,0].

2. Σ-invariants subsets of
(C∗, 0) are sectors.

3. The horizon (C∗, 0)/Σ is the
circle of directions S1.

4. Sheaves are defined over S1.

Asymptotics for q-differences

I Dynamics is given by the
semi-group Σ := q−N.

I Σ-invariants subsets of
(C∗, 0) are spiral-like.

I The horizon (C∗, 0)/Σ is the
elliptic curve Eq.

I Sheaves are defined over Eq.
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following features:

Asymptotics for ODE

1. Dynamics is given by the
semi-group Σ := e]−∞,0].

2. Σ-invariants subsets of
(C∗, 0) are sectors.

3. The horizon (C∗, 0)/Σ is the
circle of directions S1.

4. Sheaves are defined over S1.

Asymptotics for q-differences

I Dynamics is given by the
semi-group Σ := q−N.

I Σ-invariants subsets of
(C∗, 0) are spiral-like.

I The horizon (C∗, 0)/Σ is the
elliptic curve Eq.

I Sheaves are defined over Eq.



An analogue of
Stokes

phenomenon for
q-difference
equations

Jacques Sauloy

Generalities

Slopes

Classification

Irregular equations
q-adapted Poincaré asymptotics
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q-adapted Poincaré asymptotics

We write A the sheaf of functions with an asymptotic
expansion and:

ΛI (M0) := G(A) ∩ Aut(M0),

the sheaf of automorphisms of M0 infinitely tangent to
identity.

Actually,if A0 denotes the subsheaf of flat functions:

ΛI (M0) ⊂ In + GLn(A0),

whence the name.
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Meromorphic summation

The polar divisor of a meromorphic isomorphism F : A0 → A,
is q-invariant near 0, hence defined over C∗/q−N = Eq.

Theorem

There is an explicit finite subset ΣA0 ⊂ Eq such that, for all
c ∈ Eq \ ΣA0 , and for all A, there is a unique meromorphic
isomorphism F : A0 → AU such that:

∀1 ≤ i < j ≤ k , divEq(Fi ,j) ≥ −(µj − µi )[−c]
)
.

We write Sc F̂A this F and see it as a “resummation of F̂A in
the (allowed) direction c ∈ Eq \ ΣA0”. One has moreover:

Sc F̂A ∼ F̂A.
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Privileged cocycles of ΛI (M0)

We note:
Sc,d F̂A := (Sc F̂A)−1(Sd F̂A)

Properties:

1. Sc,d F̂A is a meromorphic automorphism of M0.

2. Sc,e F̂A = (Sc,d F̂A)(Sd ,e F̂A).

3. Sc,d F̂A − In is “flat”.

4. divEq((Sc,d F̂A)i ,j) ≥ −(µj − µi )([−c] + [−d ]).

Thus the Sc,d F̂A form a privileged cocycle of ΛI (M0) for the
covering UA0 of Eq made up of the Zariski open subsets
Vc := Eq \ {c}, c ∈ Eq \ ΣA0 .
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The q-Malgrange-Sibuya theorems

Write Z 1
pr

(
UA0 ,ΛI (M0)

)
the space of privileged cocycles.

Theorem

“Meromorphic summation” yields natural isomorphisms:

F(P1, . . . ,Pk) ' Z 1
pr

(
UA0 ,ΛI (M0)

)
' H1

(
Eq,ΛI (M0)

)
.

It is an easy (and pleasant) exercice to compute the
dimension of Z 1

pr

(
UA0 ,ΛI (M0)

)
.
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“Abelian” case: two slopes µ1 < µ2, one “level”δ := µ2 − µ1.

Then ΛI (M0) is an “elementary” vector bundle of slope δ
over Eq:

ΛI (M0) ' (flat bundle of rank r1r2)⊗(line bundle of degree δ).

General case: slopes µ1 < · · · < µk , levels µj − µi , i < j .
The subsheaf Λt

I (M0) made up of F s.t. F − In is t-flat has
only diagonals µj − µi ≥ t.

ΛI (M0) is built from central extensions by elementary

bundles λ
(t)
I (M0):

0→ λ
(t)
I (M0)→ ΛI (M0)

Λt+1
I (M0)

→ ΛI (M0)

Λt
I (M0)

→ 1.
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Two slopes, one level

F(M0) ' Ext(P2,P1) ' Ext
(
1,P∨2 ⊗ P1

)
' H1

(
Eq,ΛI (M0)

)
.

Example

Let A0 :=

(
a 0
0 bzδ

)
=⇒ ΣA0 = {c ∈ Eq | cδ ∈ qZa/b}.

Components over Vc ∩ Vd of cocycles of Z 1
pr (UA0 ,ΛI (M0))

are matrices Sc,d F̂A =

(
1 f
0 1

)
, where:

f (z) =
g(z)

θq(z/c)δθq(z/d)δ
,

g ∈ O(C∗) s.t. σqg = (a/b)(z/cd)δg .
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