
Computations, algebra and computer algebra in Coq

Assia Mahboubi

INRIA Microsoft Research Joint Centre (France)

INRIA Saclay – Île-de-France
École Polytechnique, Palaiseau

January 30th 2012

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 1 / 54

Proof assistants

A proof assistant is a software helping its user to check her own
mathematical proof:

Because its correctness plays a critical role in a critical application;

Because it is too large and pedestrian for a human reader;

Because it is too intricate and heterogeneous for a single reviewer.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 2 / 54

Proof assistants

Using a proof assistant means you trust a computer to check your proofs.

Use formal logic as assembly code to describe statements and proofs.

Use a proof assistant to develop and to check this code.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 3 / 54

A flavor of the assembly code

A fixed, finite set of symbols are used to construct mathematical
statements.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 4 / 54

A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (intro) of the conjunction connector

These rules are presented like arithmetic operations.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 5 / 54

A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (left elim) of the conjunction connector :

These rules are presented like arithmetic operations.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 6 / 54

A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (right elim) of the conjunction connector:

These rules are presented like arithmetic operations.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 7 / 54

A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (elim) of the implication connector:

These rules are presented like arithmetic operations.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 8 / 54

A flavor of the assembly code

What is a formal proof:

Choose a set of axioms (things one takes for granted without proof).

Form the desired conclusion.

Solve the puzzle leading from the axiom to the conclusion, using only
the previous grammar rules.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 9 / 54

Example of formal proof

Let us fix some notations:

: mortal

: man

: bearded

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 10 / 54

Example of formal proof

We choose some axioms:

Socrate

Socrate

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 11 / 54

Example of formal proof

A proof that Socrate is both bearded and mortal

Socrate

SocrateSocrate

Socrate Socrate

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 12 / 54

Example of formal proof

Let us fix some extra notations:

: expensive

: rare

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 13 / 54

Example of formal proof

And different axioms:

cheap
diamond

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 14 / 54

Example of formal proof

A proof that a cheap diamond is expensive:

cheap
diamond

cheap
diamond

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 15 / 54

Example of formal proof

cheap
diamond

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 16 / 54

Example of formal proofs

Formal proofs are trees.

Nodes are labeled with logical rules.

The proof assistant checker checks the tree is well-formed.

But the proof assistant won’t check your axioms are reasonable.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 17 / 54

Architecture of a proof assistant

Formal Language

Proof

Engine

Proof

Checker

Proof development
language

Libraries

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 18 / 54

The Coq proof assistant

Coq’s type theory is a (kind of) typed functional programming
language.

A statement is a type.

A proof is a term (a program).

The system (without user axioms) provides a constructive framework.

Computation has a special status in the inference rules of the system.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 19 / 54

Modeling natural numbers in Coq

A standard presentation in the literature is the axiomatic one, which can
be mimicked in the proof assistant:

Axioms (Relating Addition to O and S)

Anat : Type

AO : Anat

AS : Anat → Anat

+ : Anat→ Anat→ Anat

addO :

a

∀b, O + b = b
addS : ∀a b, (AS a) + b = a + (AS b)

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 20 / 54

Deductive Reasoning for Peano’s Arithmetic

Example (Deductive Proof of “4 + (2 + 3) = 9”)

9 = 9
refl_equal

0 + 9 = 9
addO

.... addS× 4
4 + 5 = 9

4 + (0 + 5) = 9
addO

4 + (1 + 4) = 9
addS

4 + (2 + 3) = 9
addS

9 steps

The bigger the natural numbers in the proof, the more theorems have to
be instantiated to prove the statement.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 21 / 54

Deductive Reasoning for Peano’s Arithmetic

This growth has a non-negligible cost.

Time complexity: matching and applying theorems
(any prover)

Space complexity: storing proof terms
(Coq-like provers)

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 22 / 54

Definitional vs axiomatic

Formal systems tending to prefer definitional extensions for consistency,
they most often won’t contain the above axioms.

The Coq system allows the definition of inductive types:

Inductive nat := O : nat | S : nat -> nat.

We can program an interpretation [_] : nat -> Anat as a recursive
function, which transforms O into AO and S into AS.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 23 / 54

Computing a bit inside proofs

We can moreover now program addition as a recursive function:

Fixpoint plus x y : nat :=

match x with

| O => y

| S x’ => plus x’ (S y)

end.

which is correct with respect to the previous specifications:

Lemma (Soundness)

plus_xlate : ∀a b : nat, [a] + [b] = [plus a b].

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 24 / 54

Computing a little inside Proofs

Example (Proof of “4 + (2 + 3) = 9”)

[9] = [9]
refl_equal

[plus 4 (plus 2 3)] = [9]
???

[4] + [plus 2 3] = [9]
plus_xlate

[4] + ([2] + [3]) = [9]
plus_xlate

4 + ([2] + [3]) = [9]
cst_xlate

4 + (2 + [3]) = [9]
cst_xlate

4 + (2 + 3) = [9]
cst_xlate

4 + (2 + 3) = 9
cst_xlate

One could consider λ-calculus as a rewriting system
and iteratively reduce “plus 4 (plus 2 3) = 9” to 9.
But this is no less costly than previous axiomatic axioms.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 25 / 54

Computing a little inside Proofs

Example (Proof of “4 + (2 + 3) = 9”)

[9] = [9]
refl_equal

[plus 4 (plus 2 3)] = [9]
???

[4] + [plus 2 3] = [9]
plus_xlate

[4] + ([2] + [3]) = [9]
plus_xlate

4 + ([2] + [3]) = [9]
cst_xlate

4 + (2 + [3]) = [9]
cst_xlate

4 + (2 + 3) = [9]
cst_xlate

4 + (2 + 3) = 9
cst_xlate

One could consider λ-calculus as a rewriting system
and iteratively reduce “plus 4 (plus 2 3) = 9” to 9.
But this is no less costly than previous axiomatic axioms.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 25 / 54

Type Theory and Conversion

Theorem (Curry-Howard Isomorphism)

Formula A∗ is valid if and only if type A is inhabited.

Example : (Γ `typing f : P → Q) is equivalent to (Γ∗ `proving P∗ ⇒ Q∗).

Property (Type Theory)

Convertible types have the same inhabitants.
p : A

p : B
A ≡ B

β-conversion: (λx .t)u ≡ t[x ← u] (+ιζδ-rules)

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 26 / 54

Type Theory and Conversion

Example (Proof of “4 + (2 + 3) = 9”)

p2 : [9] = [9]
refl_equal

p2 : [plus 4 (plus 2 3)] = [9]
conversion

[4] + [plus 2 3] = [9]
plus_xlate

p1 : [4] + ([2] + [3]) = [9]
plus_xlate

p1 : 4 + (2 + 3) = 9
conversion

5 steps

Amount of theorem instantiations no longer depends on the size of the
constants, only on the number of arithmetic operators.

Note: conversion is implicit when typechecking:
term “refl_equal [9]” has also type “[plus 4 (plus 2 3)] = [9]”.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 27 / 54

Libraries of formalized mathematics

Like in (more) traditional programming languages or computer algebra
systems, etc., the user stands on available, previously developed, libraries.

Here libraries should:

Define mathematical objects and structures and their specifications;

Develop the theory of these objects (possibly including programs);

Organize this content so that it is generic, modular and reusable.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 28 / 54

Explicit representations of mathematical objects

Like programming, formalizing mathematics imposes to choose explicit
representations for mathematical objects.

Choosing the appropriate data structure(s) is of primary importance.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 29 / 54

Formalization issues: comprehension style

In set theory: comprehension rule forges:
the set {x | P x}

In type theory: Sigma types (dependent pairs) forge:
the types {x | P x}

Is there more to say?

Yes, about the status of equality.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 30 / 54

Formalization issues: comprehension style

In set theory: comprehension rule forges:
the set {x | P x}

In type theory: Sigma types (dependent pairs) forge:
the types {x | P x}

Is there more to say?

Yes, about the status of equality.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 30 / 54

Formalization issues: comprehension style

The sigma type of duplicate free lists on type T is:

{l : listT | duplicate free l}

An inhabitant tl of this type is a pair (l , pl)

Comparing two inhabitants t1 and t2 means comparing them
component-wise:

t1 = t2 iff (l1 = l2) ∧ pl1 = pl2
The proof component should be irrelevant here.

But in general Coq is not a proof irrelevant system...

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 31 / 54

Formalization issues: comprehension style

Some (classical) predicates have a taste of proof-irrelevance:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

Suppose that duplicate free : list T → bool

Now the sigma type is: {l : listT | duplicate free l = true}

Compare (l1, p1) with (l2, p2) when l1 = l2.

I p1 : duplicate free l1 = true
I p2 : duplicate free l2 = true.

Comparing inhabitants of boolean sigma types is comparing values.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 32 / 54

Formalization issues: comprehension style

Some (classical) predicates have a taste of proof-irrelevance:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

Suppose that duplicate free : list T → bool

Now the sigma type is: {l : listT | duplicate free l = true}

Compare (l1, p1) with (l2, p2) when l1 = l2.

I p1 : duplicate free l1 = true
I p2 : duplicate free l2 = true.

Comparing inhabitants of boolean sigma types is comparing values.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 32 / 54

Formalization issues: comprehension style

Some (classical) predicates have a taste of proof-irrelevance:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

Suppose that duplicate free : list T → bool

Now the sigma type is: {l : listT | duplicate free l = true}

Compare (l1, p1) with (l2, p2) when l1 = l2.
I p1 : duplicate free l1 = true
I p2 : duplicate free l2 = true.

Comparing inhabitants of boolean sigma types is comparing values.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 32 / 54

Formalization issues: comprehension style

Some (classical) predicates have a taste of proof-irrelevance:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

Suppose that duplicate free : list T → bool

Now the sigma type is: {l : listT | duplicate free l = true}

Compare (l1, p1) with (l2, p2) when l1 = l2.
I p1 : duplicate free l1 = true
I p2 : duplicate free l2 = true.

Using the theorem, we prove that p1 = p2.

Comparing inhabitants of boolean sigma types is comparing values.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 32 / 54

Formalization issues: comprehension style

Some (classical) predicates have a taste of proof-irrelevance:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

Suppose that duplicate free : list T → bool

Now the sigma type is: {l : listT | duplicate free l = true}

Compare (l1, p1) with (l2, p2) when l1 = l2.
I p1 : duplicate free l1 = true
I p2 : duplicate free l2 = true.

Using the theorem, we prove that p1 = p2.

Comparing inhabitants of boolean sigma types is comparing values.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 32 / 54

Other issues with equality

In Coq, there is no way in general to conclude that:

f = g

from the fact that:
∀x , f (x) = g(x)

In particular, the naive representation of sets as characteristic functions
might become uncomfortable.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 33 / 54

Finite sets as finite characteristic functions

A finite type F is an enumeration of its inhabitants.

A finite set (s : set F) is represented as a mask on a finite type F:

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 34 / 54

Finite sets as finite characteristic functions

A finite type F is an enumeration of its inhabitants.

A finite set (s : set F) is represented as a mask on a finite type F:

It is a boolean list of fixed length] F.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 34 / 54

Finite sets as finite characteristic functions

A finite type F is an enumeration of its inhabitants.

A finite set (s : set F) is represented as a mask on a finite type F:

A mask coerces to a characteristic function (s : F -> bool), such that

s1 = s2 ⇔ (∀x , s1 x = s2 x)

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 34 / 54

Mathematical datas, mathematical structures

Types are used to classify:

datas

Inductive nat := O : nat | S : nat -> nat.

Check 5.

>> 5 : nat

Inductive list (A : Type) :=

nil : list A | cons : list A -> list A.

Check (cons 3 nil).

>> (cons 3 nil) : nat

mathematical specifications and structures

Definition set0 F : {set F} := ...

Definition zint_Ring : ringType := ...

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 35 / 54

Mathematical datas, mathematical structures

Types are used to classify:

datas

Inductive nat := O : nat | S : nat -> nat.

Check 5.

>> 5 : nat

Inductive list (A : Type) :=

nil : list A | cons : list A -> list A.

Check (cons 3 nil).

>> (cons 3 nil) : nat

mathematical specifications and structures

Definition set0 F : {set F} := ...

Definition zint_Ring : ringType := ...

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 35 / 54

Mathematical structures

The previous Σ-types generalize to record types that can be used to
represent interfaces of mathematical structures:

Structure orderedType := mkOrderedType {

car : Type;

ord : car -> car -> Prop;

anti_ord : antisym ord;

trans_ord : transitive ord}.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 36 / 54

Mathematical structures
Organization of the development:

Definition of the structure

Structure zmodType := ZmodType {...}

Definition of the associated notations

Notation "0" := (zero _).

Notation "x + y" := (add x y).

Notation "x - y" := (x + - y).

Definition of the theory shared by any instance of the structure

Lemma subr0 x : x - 0 = x. Proof. ... Qed.

Instanciation of the structure

Definition Zp_zmodType := ZmodType ’I_p Zp_modMixin.

For each instance, more specific results, which use the generic theory.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 37 / 54

Mathematical structures
Organization of the development:

Definition of the structure

Structure zmodType := ZmodType {...}

Definition of the associated notations

Notation "0" := (zero _).

Notation "x + y" := (add x y).

Notation "x - y" := (x + - y).

Definition of the theory shared by any instance of the structure

Lemma subr0 x : x - 0 = x. Proof. ... Qed.

Instanciation of the structure

Definition Zp_zmodType := ZmodType ’I_p Zp_modMixin.

For each instance, more specific results, which use the generic theory.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 37 / 54

Mathematical structures
Organization of the development:

Definition of the structure

Structure zmodType := ZmodType {...}

Definition of the associated notations

Notation "0" := (zero _).

Notation "x + y" := (add x y).

Notation "x - y" := (x + - y).

Definition of the theory shared by any instance of the structure

Lemma subr0 x : x - 0 = x. Proof. ... Qed.

Instanciation of the structure

Definition Zp_zmodType := ZmodType ’I_p Zp_modMixin.

For each instance, more specific results, which use the generic theory.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 37 / 54

Mathematical structures
Organization of the development:

Definition of the structure

Structure zmodType := ZmodType {...}

Definition of the associated notations

Notation "0" := (zero _).

Notation "x + y" := (add x y).

Notation "x - y" := (x + - y).

Definition of the theory shared by any instance of the structure

Lemma subr0 x : x - 0 = x. Proof. ... Qed.

Instanciation of the structure

Definition Zp_zmodType := ZmodType ’I_p Zp_modMixin.

For each instance, more specific results, which use the generic theory.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 37 / 54

Mathematical structures
Organization of the development:

Definition of the structure

Structure zmodType := ZmodType {...}

Definition of the associated notations

Notation "0" := (zero _).

Notation "x + y" := (add x y).

Notation "x - y" := (x + - y).

Definition of the theory shared by any instance of the structure

Lemma subr0 x : x - 0 = x. Proof. ... Qed.

Instanciation of the structure

Definition Zp_zmodType := ZmodType ’I_p Zp_modMixin.

For each instance, more specific results, which use the generic theory.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 37 / 54

Mathematical structures

The hierarchy of algebraic structures can be designed to achieve the
desired:

Inheritance

Sharing

Inference

This is a place where we benefit from working in a type theory:

Types are used to carry a rich mathematical content

But the user does not need to provide the whole information since the
system implements a type inference mechanism similar to modern
functional programming languages.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 38 / 54

Implicit content of mathematical notations

It is folklore that a number of mathematical notations carry some implicit
content:

Sometimes implicitly containing the preservation of the structure:

G × H G ∗ H G ∩ H G o H G/H

Sometimes only for the expression to make sense:

det(M) :=
∑
s∈Sn

(−1)εs
∏
i

Mi ,s(i)

Finding a way to infer this implicit content automatically is mandatory in
order for a formalization to scale...

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 39 / 54

Implicit content of mathematical notations

And Coq’s type system and implementation does the job:

Variable R : ringType.

Definition determinant n (A : ’M_n) : R :=

\sum_(s : ’S_n) (-1) ^+ s * \prod_i A i (s i).

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 40 / 54

Modeling and specification of algorithms

The theory developed for the instances of abstract structures can include
the modeling of algorithms.

Coq can be considered as a pseudo-language for the description of the
algorithm.

The data structures chosen should be the most convenient
representations for the proofs.

Example: summation of the first natural numbers.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 41 / 54

LUP matrix decomposition

Any square matrix A can be decomposed as:

with:

P a permutation matrix (= possible row swaps)

L a lower triangular matrix

U an upper triangular matrix

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 42 / 54

LUP matrix decomposition

By recursion on the size n of A :

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 43 / 54

LUP matrix decomposition

By recursion on the size n of A :

Easy case: when v is zero

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 43 / 54

LUP matrix decomposition

By recursion on the size n of A :

then by recursion hypothesis, P1A1 = L1U1

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 43 / 54

LUP matrix decomposition

By recursion on the size n of A :

we obtain an LUP decomposition.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 43 / 54

LUP matrix decomposition

Now in the general case:

We use a permutation matrix Q to perform a swap and get a 6= 0.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 44 / 54

LUP matrix decomposition
Now in the general case:

We use this a to annihilate the rest of the first column of QA :
A′1 = A1 − Schur with Schur = a−1 ∗ v ∗ w
We apply the recursion hypothesis to A′1 : P1A

′
1 = L1U1

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 44 / 54

LUP matrix decomposition

Now in the general case:

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 44 / 54

Modeling and specification of algorithms

The logic underlying the Coq system is constructive: excluded middle is
not an admissible rule, hence classical reasoning is now allowed on an
arbitrary statement.

The bool data type is distinct from the Prop sort.

A significant part of the mathematics formalized inside Coq has the
flavor presented in this example.

A global excluded-middle axiom is not that convenient in practice.

Programming and proving the correctness of a decision procedure for
the first-order theory of a mathematical structure (eg. algebraically
closed, real closed fields) legitimates classical reasoning on this
fragment inside proofs.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 45 / 54

Modeling and specification of algorithms

The logic underlying the Coq system is constructive: excluded middle is
not an admissible rule, hence classical reasoning is now allowed on an
arbitrary statement.

The bool data type is distinct from the Prop sort.

A significant part of the mathematics formalized inside Coq has the
flavor presented in this example.

A global excluded-middle axiom is not that convenient in practice.

Programming and proving the correctness of a decision procedure for
the first-order theory of a mathematical structure (eg. algebraically
closed, real closed fields) legitimates classical reasoning on this
fragment inside proofs.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 45 / 54

Modeling and specification of algorithms

The logic underlying the Coq system is constructive: excluded middle is
not an admissible rule, hence classical reasoning is now allowed on an
arbitrary statement.

The bool data type is distinct from the Prop sort.

A significant part of the mathematics formalized inside Coq has the
flavor presented in this example.

A global excluded-middle axiom is not that convenient in practice.

Programming and proving the correctness of a decision procedure for
the first-order theory of a mathematical structure (eg. algebraically
closed, real closed fields) legitimates classical reasoning on this
fragment inside proofs.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 45 / 54

Modeling and specification of algorithms

The logic underlying the Coq system is constructive: excluded middle is
not an admissible rule, hence classical reasoning is now allowed on an
arbitrary statement.

The bool data type is distinct from the Prop sort.

A significant part of the mathematics formalized inside Coq has the
flavor presented in this example.

A global excluded-middle axiom is not that convenient in practice.

Programming and proving the correctness of a decision procedure for
the first-order theory of a mathematical structure (eg. algebraically
closed, real closed fields) legitimates classical reasoning on this
fragment inside proofs.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 45 / 54

Execution of the algorithms

The previous code cannot be executed as such: the data-structures that
are appropriate for proofs are not the efficient ones for computation.

How to link this ideal description with a concrete, executable
implementation?

Two possibilities:

Use a direct translation to a functional programming language

Work further to obtain an efficient execution inside Coq

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 46 / 54

Extraction
P. Letouzey (Paris 7)

A mechanism of automated translation, called extraction is available:

Targets are presently OCaml and Haskell.

Proofs and specifications are erased.

One can specify target data-structures.

The correctness of the extraction mechanism should be trusted.

The correctness of the language compiler should also be trusted.

Example: the CompCert C(light) compiler (X. Leroy et al.) consists in
Ocaml code extracted from a Coq formalization of correctness.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 47 / 54

Execution of the algorithms inside Coq

Several levels of optimization can lead to executable programs inside Coq:

New data-structures, proved correct wrt to the ideal ones;

Optimized versions of the algorithms;

Optimized reduction inside Coq (so-called virtual-machine);

Semi-imperative features: machine integers, arrays.

Note that the two last options increase the size of the trusted code.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 48 / 54

Proof automation by computation

Computer algebra systems allow to use a computer to perform
computations that are too large, intricate to be tractable by hand by the
mathematician.

A formal proof can involve a number of relatively small computational
steps, that would become too tedious if not automatized.

Example: the ring tactic.

Application: Primality proving with elliptic curves, G. Hanrot and L. Théry

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 49 / 54

Proof automation by computation

Computer algebra systems allow to use a computer to perform
computations that are too large, intricate to be tractable by hand by the
mathematician.

A formal proof can involve a number of relatively small computational
steps, that would become too tedious if not automatized.

Example: the ring tactic.

Application: Primality proving with elliptic curves, G. Hanrot and L. Théry

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 49 / 54

Certification of external oracles

So far we have seen examples where:

One programs an algorithm in the Coq language;

One proves a correctness theorem ensuring a property for any value
computed by the program;

By construction, the program and the specification are objects of the
Coq formalism.

One can also sometimes use a lighter approach using computations
performed outside Coq, by an untrusted code.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 50 / 54

Certification of external oracles

Suppose that:

You dispose of a binary implementing of a powerful factorization
algorithm;

You want to disprove inside Coq the primality of some natural
number n;

You can call the external factorization tool, which computes
p1, . . . , pk a factorization of n;

You somehow communicate this candidate factorization to Coq;
(this is pure plumbing)

You now only need to check inside Coq, that n = p1 × · · · × pk ;

And to contradict the definition of the primality of n.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 51 / 54

Certification of external oracles

Suppose that:

You dispose of a binary implementing of a powerful factorization
algorithm;

You want to disprove inside Coq the primality of some natural
number n;

You can call the external factorization tool, which computes
p1, . . . , pk a factorization of n;

You somehow communicate this candidate factorization to Coq;
(this is pure plumbing)

You now only need to check inside Coq, that n = p1 × · · · × pk ;

And to contradict the definition of the primality of n.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 51 / 54

Certification of external oracles

Suppose that:

You dispose of a binary implementing of a powerful factorization
algorithm;

You want to disprove inside Coq the primality of some natural
number n;

You can call the external factorization tool, which computes
p1, . . . , pk a factorization of n;

You somehow communicate this candidate factorization to Coq;
(this is pure plumbing)

You now only need to check inside Coq, that n = p1 × · · · × pk ;

And to contradict the definition of the primality of n.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 51 / 54

Certification of external oracles

Suppose that:

You dispose of a binary implementing of a powerful factorization
algorithm;

You want to disprove inside Coq the primality of some natural
number n;

You can call the external factorization tool, which computes
p1, . . . , pk a factorization of n;

You somehow communicate this candidate factorization to Coq;
(this is pure plumbing)

You now only need to check inside Coq, that n = p1 × · · · × pk ;

And to contradict the definition of the primality of n.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 51 / 54

Certification of external oracles

Suppose that:

You dispose of a binary implementing of a powerful factorization
algorithm;

You want to disprove inside Coq the primality of some natural
number n;

You can call the external factorization tool, which computes
p1, . . . , pk a factorization of n;

You somehow communicate this candidate factorization to Coq;
(this is pure plumbing)

You now only need to check inside Coq, that n = p1 × · · · × pk ;

And to contradict the definition of the primality of n.

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 51 / 54

Certification of external oracles

This approach is specially relevant when the property of interest can be
characterized by a certificate, which is easier to check than to find.

Examples:

The psatz tactic (F. Besson) which proves positivity of polynomial
via sums of squares decomposition (calling csdp);

The Gb tactic (L. Pottier) which proves that a polynomial equation is
consequence of others via Gröbner basis computations. (calling F4)

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 52 / 54

Combined approaches

In the previous examples, the certificates were relatively small and the
correctness theorem deriving a proof from their verification, easy to prove.

This approach can be extended in both directions:

When certificates are larger, they are called traces: they can be use as
a path to reconstruct a Coq proof. Example:

I Automated generation of proof of properties on numerical programs
dealing with floating-point or fixed-point arithmetic Gappa

(G. Melquiond)

When one disposes of sophisticated formal libraries, one can use more
intricate correctness theorems. Examples:

I Primality certificates like Pocklington
(B. Grégoire, L. Théry, B. Werner)

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 53 / 54

Conclusion

The Coq system is a type theory based proof assistant:

Which allows to take benefit from type inference to infer
mathematical implicit content;

Which allows a special place for computation in the formalism, and
optimization in its implementation.

Recent evolutions of the system and of the developed libraries:

Offer various approaches for the formalization of computer algebra
algorithms, with various levels of trusted code;

Allow to stand on a significant body of formalized mathematical
theories (see the Mathematical Components project).

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 54 / 54

