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Proof assistants

A proof assistant is a software helping its user to check her own
mathematical proof:

Because its correctness plays a critical role in a critical application;

Because it is too large and pedestrian for a human reader;

Because it is too intricate and heterogeneous for a single reviewer.
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Proof assistants

Using a proof assistant means you trust a computer to check your proofs.

Use formal logic as assembly code to describe statements and proofs.

Use a proof assistant to develop and to check this code.
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A flavor of the assembly code

A fixed, finite set of symbols are used to construct mathematical
statements.
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A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (intro) of the conjunction connector  

These rules are presented like arithmetic operations.
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A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (left elim) of the conjunction connector : 

These rules are presented like arithmetic operations.
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A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (right elim) of the conjunction connector: 

These rules are presented like arithmetic operations.
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A flavor of the assembly code

Each symbol is associated with some grammar rules:

Grammar rule (elim) of the implication connector: 

These rules are presented like arithmetic operations.
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A flavor of the assembly code

What is a formal proof:

Choose a set of axioms (things one takes for granted without proof).

Form the desired conclusion.

Solve the puzzle leading from the axiom to the conclusion, using only
the previous grammar rules.
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Example of formal proof

Let us fix some notations:

: mortal

: man

: bearded
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Example of formal proof

We choose some axioms:

Socrate

Socrate
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Example of formal proof

A proof that Socrate is both bearded and mortal

Socrate

SocrateSocrate

Socrate Socrate
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Example of formal proof

Let us fix some extra notations:

: expensive

: rare
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Example of formal proof

And different axioms:

cheap
diamond
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Example of formal proof

A proof that a cheap diamond is expensive:

cheap
diamond

cheap
diamond
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Example of formal proof

cheap
diamond

A. Mahboubi (INRIA) Computer Algebra in Coq January 30th 2012 16 / 54



Example of formal proofs

Formal proofs are trees.

Nodes are labeled with logical rules.

The proof assistant checker checks the tree is well-formed.

But the proof assistant won’t check your axioms are reasonable.
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Architecture of a proof assistant

Formal Language

Proof

Engine

Proof

Checker

Proof development 
language

Libraries
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The Coq proof assistant

Coq’s type theory is a (kind of) typed functional programming
language.

A statement is a type.

A proof is a term (a program).

The system (without user axioms) provides a constructive framework.

Computation has a special status in the inference rules of the system.
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Modeling natural numbers in Coq

A standard presentation in the literature is the axiomatic one, which can
be mimicked in the proof assistant:

Axioms (Relating Addition to O and S)

Anat : Type

AO : Anat

AS : Anat → Anat

+ : Anat→ Anat→ Anat

addO :

a

∀b, O + b = b
addS : ∀a b, (AS a) + b = a + (AS b)
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Deductive Reasoning for Peano’s Arithmetic

Example (Deductive Proof of “4 + (2 + 3) = 9”)

9 = 9
refl_equal

0 + 9 = 9
addO

.... addS× 4
4 + 5 = 9

4 + (0 + 5) = 9
addO

4 + (1 + 4) = 9
addS

4 + (2 + 3) = 9
addS

9 steps

The bigger the natural numbers in the proof, the more theorems have to
be instantiated to prove the statement.
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Deductive Reasoning for Peano’s Arithmetic

This growth has a non-negligible cost.

Time complexity: matching and applying theorems
(any prover)

Space complexity: storing proof terms
(Coq-like provers)
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Definitional vs axiomatic

Formal systems tending to prefer definitional extensions for consistency,
they most often won’t contain the above axioms.

The Coq system allows the definition of inductive types:

Inductive nat := O : nat | S : nat -> nat.

We can program an interpretation [_] : nat -> Anat as a recursive
function, which transforms O into AO and S into AS.
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Computing a bit inside proofs

We can moreover now program addition as a recursive function:

Fixpoint plus x y : nat :=

match x with

| O => y

| S x’ => plus x’ (S y)

end.

which is correct with respect to the previous specifications:

Lemma (Soundness)

plus_xlate : ∀a b : nat, [a] + [b] = [plus a b].
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Computing a little inside Proofs

Example (Proof of “4 + (2 + 3) = 9”)

[9] = [9]
refl_equal

[plus 4 (plus 2 3)] = [9]
???

[4] + [plus 2 3] = [9]
plus_xlate

[4] + ([2] + [3]) = [9]
plus_xlate

4 + ([2] + [3]) = [9]
cst_xlate

4 + (2 + [3]) = [9]
cst_xlate

4 + (2 + 3) = [9]
cst_xlate

4 + (2 + 3) = 9
cst_xlate

One could consider λ-calculus as a rewriting system
and iteratively reduce “plus 4 (plus 2 3) = 9” to 9.
But this is no less costly than previous axiomatic axioms.
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Type Theory and Conversion

Theorem (Curry-Howard Isomorphism)

Formula A∗ is valid if and only if type A is inhabited.

Example : (Γ `typing f : P → Q) is equivalent to (Γ∗ `proving P∗ ⇒ Q∗).

Property (Type Theory)

Convertible types have the same inhabitants.
p : A

p : B
A ≡ B

β-conversion: (λx .t)u ≡ t[x ← u] (+ιζδ-rules)
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Type Theory and Conversion

Example (Proof of “4 + (2 + 3) = 9”)

p2 : [9] = [9]
refl_equal

p2 : [plus 4 (plus 2 3)] = [9]
conversion

[4] + [plus 2 3] = [9]
plus_xlate

p1 : [4] + ([2] + [3]) = [9]
plus_xlate

p1 : 4 + (2 + 3) = 9
conversion

5 steps

Amount of theorem instantiations no longer depends on the size of the
constants, only on the number of arithmetic operators.

Note: conversion is implicit when typechecking:
term “refl_equal [9]” has also type “[plus 4 (plus 2 3)] = [9]”.
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Libraries of formalized mathematics

Like in (more) traditional programming languages or computer algebra
systems, etc., the user stands on available, previously developed, libraries.

Here libraries should:

Define mathematical objects and structures and their specifications;

Develop the theory of these objects (possibly including programs);

Organize this content so that it is generic, modular and reusable.
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Explicit representations of mathematical objects

Like programming, formalizing mathematics imposes to choose explicit
representations for mathematical objects.

Choosing the appropriate data structure(s) is of primary importance.
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Formalization issues: comprehension style

In set theory: comprehension rule forges:
the set {x | P x}

In type theory: Sigma types (dependent pairs) forge:
the types {x | P x}

Is there more to say?

Yes, about the status of equality.
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Formalization issues: comprehension style

The sigma type of duplicate free lists on type T is:

{l : listT | duplicate free l}

An inhabitant tl of this type is a pair (l , pl)

Comparing two inhabitants t1 and t2 means comparing them
component-wise:

t1 = t2 iff (l1 = l2) ∧ pl1 = pl2
The proof component should be irrelevant here.

But in general Coq is not a proof irrelevant system...
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Formalization issues: comprehension style

Some (classical) predicates have a taste of proof-irrelevance:

∀ (x y : bool) (p1 p2 : x = y), p1 = p2

Suppose that duplicate free : list T → bool

Now the sigma type is: {l : listT | duplicate free l = true}

Compare (l1, p1) with (l2, p2) when l1 = l2.

I p1 : duplicate free l1 = true
I p2 : duplicate free l2 = true.

Comparing inhabitants of boolean sigma types is comparing values.
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Other issues with equality

In Coq, there is no way in general to conclude that:

f = g

from the fact that:
∀x , f (x) = g(x)

In particular, the naive representation of sets as characteristic functions
might become uncomfortable.
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Finite sets as finite characteristic functions

A finite type F is an enumeration of its inhabitants.

A finite set (s : set F) is represented as a mask on a finite type F:
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Finite sets as finite characteristic functions

A finite type F is an enumeration of its inhabitants.

A finite set (s : set F) is represented as a mask on a finite type F:

It is a boolean list of fixed length ] F.
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Finite sets as finite characteristic functions

A finite type F is an enumeration of its inhabitants.

A finite set (s : set F) is represented as a mask on a finite type F:

A mask coerces to a characteristic function (s : F -> bool), such that

s1 = s2 ⇔ (∀x , s1 x = s2 x)
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Mathematical datas, mathematical structures

Types are used to classify:

datas

Inductive nat := O : nat | S : nat -> nat.

Check 5.

>> 5 : nat

Inductive list (A : Type) :=

nil : list A | cons : list A -> list A.

Check (cons 3 nil).

>> (cons 3 nil) : nat

mathematical specifications and structures

Definition set0 F : {set F} := ...

Definition zint_Ring : ringType := ...
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Mathematical structures

The previous Σ-types generalize to record types that can be used to
represent interfaces of mathematical structures:

Structure orderedType := mkOrderedType {

car : Type;

ord : car -> car -> Prop;

anti_ord : antisym ord;

trans_ord : transitive ord}.
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Mathematical structures
Organization of the development:

Definition of the structure

Structure zmodType := ZmodType {...}

Definition of the associated notations

Notation "0" := (zero _).

Notation "x + y" := (add x y).

Notation "x - y" := (x + - y).

Definition of the theory shared by any instance of the structure

Lemma subr0 x : x - 0 = x. Proof. ... Qed.

Instanciation of the structure

Definition Zp_zmodType := ZmodType ’I_p Zp_modMixin.

For each instance, more specific results, which use the generic theory.
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Mathematical structures

The hierarchy of algebraic structures can be designed to achieve the
desired:

Inheritance

Sharing

Inference

This is a place where we benefit from working in a type theory:

Types are used to carry a rich mathematical content

But the user does not need to provide the whole information since the
system implements a type inference mechanism similar to modern
functional programming languages.
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Implicit content of mathematical notations

It is folklore that a number of mathematical notations carry some implicit
content:

Sometimes implicitly containing the preservation of the structure:

G × H G ∗ H G ∩ H G o H G/H

Sometimes only for the expression to make sense:

det(M) :=
∑
s∈Sn

(−1)εs
∏
i

Mi ,s(i)

Finding a way to infer this implicit content automatically is mandatory in
order for a formalization to scale...
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Implicit content of mathematical notations

And Coq’s type system and implementation does the job:

Variable R : ringType.

Definition determinant n (A : ’M_n) : R :=

\sum_(s : ’S_n) (-1) ^+ s * \prod_i A i (s i).
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Modeling and specification of algorithms

The theory developed for the instances of abstract structures can include
the modeling of algorithms.

Coq can be considered as a pseudo-language for the description of the
algorithm.

The data structures chosen should be the most convenient
representations for the proofs.

Example: summation of the first natural numbers.
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LUP matrix decomposition

Any square matrix A can be decomposed as:

with:

P a permutation matrix (= possible row swaps)

L a lower triangular matrix

U an upper triangular matrix
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LUP matrix decomposition

By recursion on the size n of A :
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LUP matrix decomposition

By recursion on the size n of A :

Easy case: when v is zero
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LUP matrix decomposition

By recursion on the size n of A :

then by recursion hypothesis, P1A1 = L1U1
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LUP matrix decomposition

By recursion on the size n of A :

we obtain an LUP decomposition.
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LUP matrix decomposition

Now in the general case:

We use a permutation matrix Q to perform a swap and get a 6= 0.
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LUP matrix decomposition
Now in the general case:

We use this a to annihilate the rest of the first column of QA :
A′1 = A1 − Schur with Schur = a−1 ∗ v ∗ w
We apply the recursion hypothesis to A′1 : P1A

′
1 = L1U1
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LUP matrix decomposition

Now in the general case:
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Modeling and specification of algorithms

The logic underlying the Coq system is constructive: excluded middle is
not an admissible rule, hence classical reasoning is now allowed on an
arbitrary statement.

The bool data type is distinct from the Prop sort.

A significant part of the mathematics formalized inside Coq has the
flavor presented in this example.

A global excluded-middle axiom is not that convenient in practice.

Programming and proving the correctness of a decision procedure for
the first-order theory of a mathematical structure (eg. algebraically
closed, real closed fields) legitimates classical reasoning on this
fragment inside proofs.
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Execution of the algorithms

The previous code cannot be executed as such: the data-structures that
are appropriate for proofs are not the efficient ones for computation.

How to link this ideal description with a concrete, executable
implementation?

Two possibilities:

Use a direct translation to a functional programming language

Work further to obtain an efficient execution inside Coq
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Extraction
P. Letouzey (Paris 7)

A mechanism of automated translation, called extraction is available:

Targets are presently OCaml and Haskell.

Proofs and specifications are erased.

One can specify target data-structures.

The correctness of the extraction mechanism should be trusted.

The correctness of the language compiler should also be trusted.

Example: the CompCert C(light) compiler (X. Leroy et al.) consists in
Ocaml code extracted from a Coq formalization of correctness.
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Execution of the algorithms inside Coq

Several levels of optimization can lead to executable programs inside Coq:

New data-structures, proved correct wrt to the ideal ones;

Optimized versions of the algorithms;

Optimized reduction inside Coq (so-called virtual-machine);

Semi-imperative features: machine integers, arrays.

Note that the two last options increase the size of the trusted code.
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Proof automation by computation

Computer algebra systems allow to use a computer to perform
computations that are too large, intricate to be tractable by hand by the
mathematician.

A formal proof can involve a number of relatively small computational
steps, that would become too tedious if not automatized.

Example: the ring tactic.

Application: Primality proving with elliptic curves, G. Hanrot and L. Théry
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Certification of external oracles

So far we have seen examples where:

One programs an algorithm in the Coq language;

One proves a correctness theorem ensuring a property for any value
computed by the program;

By construction, the program and the specification are objects of the
Coq formalism.

One can also sometimes use a lighter approach using computations
performed outside Coq, by an untrusted code.
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Certification of external oracles

Suppose that:

You dispose of a binary implementing of a powerful factorization
algorithm;

You want to disprove inside Coq the primality of some natural
number n;

You can call the external factorization tool, which computes
p1, . . . , pk a factorization of n;

You somehow communicate this candidate factorization to Coq;
(this is pure plumbing)

You now only need to check inside Coq, that n = p1 × · · · × pk ;

And to contradict the definition of the primality of n.
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Certification of external oracles

This approach is specially relevant when the property of interest can be
characterized by a certificate, which is easier to check than to find.

Examples:

The psatz tactic (F. Besson) which proves positivity of polynomial
via sums of squares decomposition (calling csdp);

The Gb tactic (L. Pottier) which proves that a polynomial equation is
consequence of others via Gröbner basis computations. (calling F4)
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Combined approaches

In the previous examples, the certificates were relatively small and the
correctness theorem deriving a proof from their verification, easy to prove.

This approach can be extended in both directions:

When certificates are larger, they are called traces: they can be use as
a path to reconstruct a Coq proof. Example:

I Automated generation of proof of properties on numerical programs
dealing with floating-point or fixed-point arithmetic Gappa

(G. Melquiond)

When one disposes of sophisticated formal libraries, one can use more
intricate correctness theorems. Examples:

I Primality certificates like Pocklington
(B. Grégoire, L. Théry, B. Werner)
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Conclusion

The Coq system is a type theory based proof assistant:

Which allows to take benefit from type inference to infer
mathematical implicit content;

Which allows a special place for computation in the formalism, and
optimization in its implementation.

Recent evolutions of the system and of the developed libraries:

Offer various approaches for the formalization of computer algebra
algorithms, with various levels of trusted code;

Allow to stand on a significant body of formalized mathematical
theories (see the Mathematical Components project).
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