Computing Closed-Form Solutions of Integrable Connections

Thomas Cluzeau

thomas.cluzeau@lim.fr
http://www.ensil.unilim.fr/~cluzeau/

Joint work with M. Barkatou, C. El Bacha and J.-A. Weil

Algorithms Project’s Seminar
INRIA Rocquencourt, March 26, 2012
Problem in probability theory: find all probability distributions \(\mu \) on real symmetric matrices of order \(n \) such that if \(X \) and \(Y \) are independent with the same distribution \(\mu \), then \(X + Y = S \) and \(S^{-1} X^2 S^{-1} = Z \) are independent.

Under some restrictions, the problem can be reduced to (Bryc-Letac’12):

Find \(y(x_1, \ldots, x_n) \) such that

\[
\forall j \in \{1, \ldots, n\}, \quad \frac{\beta}{2} (j - n) \frac{\partial y}{\partial x_{j+1}} + \text{Tr}(P_j \text{Hess}(y)) = 0,
\]

where \(\beta \) is the Peirce constant (\(\beta \in \{1, 2, 4, 8, -2\} \)), \(\text{Hess} \) the Hessian matrix and the \(P_j \)'s are given symmetric matrices.
Introducing example - G. Letac, W. Bryc (2)

◊ Case $n = 2$:

$$-\frac{\beta}{2} \frac{\partial y}{\partial x_2} + \frac{\partial^2 y}{\partial x_1^2} - x_2 \frac{\partial^2 y}{\partial x_2^2} = 0$$

$$2 \frac{\partial^2 y}{\partial x_1 \partial x_2} + x_1 \frac{\partial^2 y}{\partial x_2^2} = 0$$

◊ Case $n = 3$:

$$-\beta \frac{\partial y}{\partial x_2} + \frac{\partial^2 y}{\partial x_1^2} - x_2 \frac{\partial^2 y}{\partial x_2^2} - 2x_3 \frac{\partial^2 y}{\partial x_2 \partial x_3} = 0$$

$$-\frac{\beta}{2} \frac{\partial y}{\partial x_3} + 2 \frac{\partial^2 y}{\partial x_1 \partial x_2} + x_1 \frac{\partial^2 y}{\partial x_2^2} - x_3 \frac{\partial^2 y}{\partial x_2 \partial x_3} = 0$$

$$\frac{\partial^2 y}{\partial x_2^2} + 2 \frac{\partial^2 y}{\partial x_1 \partial x_3} + 2x_1 \frac{\partial^2 y}{\partial x_2 \partial x_3} + x_2 \frac{\partial^2 y}{\partial x_2 \partial x_3} = 0$$

◊ Problem: compute “solutions” of such linear systems of PDEs
-contributions

- **Remark:** the latter systems are *D*-finite (*Chyzak-Salvy’98*)

- In this talk, we provide **algorithms** for computing:
 - rational solutions
 - hyperexponential solutions

 of such *D*-finite linear systems of PDEs.

- Maple **implementation** available at

 http://www.ensil.unilim.fr/~cluzeau/PDS.html

- **Complexity analysis**
Outline of the talk

1. D-finite linear systems of PDEs
2. Rational solutions
3. Hyperexponential solutions
4. Implementation
5. Conclusions
D-finite linear systems of PDEs
Notations and a definition

- C computable field of char. zero, \overline{C} its algebraic closure
- $k = C(x_1, \ldots, x_m)$ and $K = \overline{C}(x_1, \ldots, x_m)$, $\partial_i = \partial/\partial x_i$

Definition

\mathcal{U} universal differential extension of k containing all solutions of linear systems of PDEs over k (existence, e.g., Kolchin’73).

A linear system of PDEs is said to be **D-finite** if its solution space in \mathcal{U} is of finite dimension over C.

- **Algorithms** to test if a given system is D-finite exist
 - (Chyzak-Salvy’98 - Gröbner or Janet basis computations)
- **Implementation**: OreModules (Chyzak-Quadrat-Robertz)
Integrable connections

Definition

Integrable connection over k of size n in m variables:

\[
\begin{align*}
\Delta_1 Y &= 0 \quad \text{with} \quad \Delta_1 := \partial_1 I_n - A_1 \\
&\vdots \\
\Delta_m Y &= 0 \quad \text{with} \quad \Delta_m := \partial_m I_n - A_m
\end{align*}
\]

where $A_i's \in \mathbb{M}_n(k)$ and the integrability conditions are satisfied:

\[
\partial_i(A_j) - A_i A_j = \partial_j(A_i) - A_j A_i, \quad \forall i, j \in \{1, \ldots, m\}
\]

- Every D-finite linear system of PDEs can be written as an integrable connection (Chyzak-Salvy’98), implementation in OreModules (Chyzak-Quadrat-Robertz)
Example: Bryc-Letac system for $n = 2$

\[-\frac{\beta}{2} \partial_2 y + \partial_1^2 y - x_2 \partial_2^2 y = 0\]
\[2 \partial_1 \partial_2 y + x_1 \partial_2^2 y = 0\]

◊ Integrable connection over $Q(\beta)$ of size 4 in 2 variables:

\[\partial_i Y - A_i Y = 0, \quad i = 1, 2, \quad \text{with}\]

\[A_1 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -\frac{1}{2} x_1 \\
0 & \frac{1}{2} \beta & 0 & x_2 \\
0 & 0 & 0 & \frac{(-3-\beta)x_1}{x_1^2-4x_2}
\end{pmatrix}, \quad A_2 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & -\frac{1}{2} x_1 \\
0 & 0 & 0 & \frac{6+2 \beta}{x_1^2-4x_2}
\end{pmatrix}\]

◊ $Y = (y \quad \partial_2 y \quad \partial_1 y \quad \partial_2^2 y)^T$
Existing works

- Algorithmic studies of D-finite linear systems of PDEs:
 - Chyzak’00, Oaku-Takayama-Tsai’01: rational solutions of holonomic systems
 - Li-Schwarz-Tsarev’03: factorization, hyperexp. solutions
 - Barkatou-Cluzeau-Weil’05: factorization in char. p
 - Wu’05, Li-Singer-Wu-Zheng’06: Picard-Vessiot extensions, factorization, hyperexp. solutions over Laurent-Ore algebras

- Strategy of our work:
 - Consider integrable connections
 - Proceed recursively: benefit from algorithms for ordinary differential (OD) systems
Rational solutions
Rational solutions of OD systems (1)

\(C \) computable field of char. zero, \(\overline{C} \) its algebraic closure,
\(k = C(x) \) and \(K = \overline{C}(x) \)

\[Y' = AY, \quad A \in \mathbb{M}_n(k), \quad \text{denom}(A) = \prod_{i=1}^{s} q_i(x)^{r_i+1} \]

Algorithm for computing rational solutions (for ex. Barkatou'99):

- Compute a universal denominator \(Q = \prod_{i=1}^{s} q_i(x)^{m_i} \)
- Compute polynomial solutions of \(Z' = (A + (Q'/Q) I_n) Z \)
Complexity estimate

\[Y' = A \cdot Y, \quad A = (a_{i,j})_{i,j} \in M_n(k), \quad \text{denom}(A) = Q_{i=1}^s q_i(x)^{r_i+1} \]

\[X^s \]

\[d := (r_i + 1) \deg(q_i) \]

\[r_\infty := \max_{i,j} \max_i \left(1 + \deg(\text{num}(a_{i,j})) - \deg(\text{den}(a_{i,j})) \right) + 0 \]

◊ **Arithmetic (operations in \(C \)) complexity estimate (BCEW'12):**

- **Universal denominator:** simple form at \(q_i \), integer roots of the *indicial polynomial*: \(\mathcal{O}(n^5 \max_i(r_i) d) \)

- **Polynomial solutions:** degree bound (simple form at \(\infty \)),
 coefficients: \(\mathcal{O}(n^5 r_\infty^2 + n^3 N^2) \)

\[\leadsto \text{rational solutions of } Y' = A \cdot Y: \mathcal{O}(n^5 (\max_i(r_i) d + r_\infty^2) + n^3 N^2) \]

◊ **Main tool:** simple form (arithm. compl. in El Bacha’s PhD’11)
Rational solutions of integrable connections (1)

\[k = C(x_1, \ldots, x_m), \quad K = \overline{C}(x_1, \ldots, x_m) \]

\[\Delta_1 Y = 0 \quad \text{with} \quad \Delta_1 := \partial_1 I_n - A_1, \]
\[\vdots \]
\[\Delta_m Y = 0 \quad \text{with} \quad \Delta_m := \partial_m I_n - A_m, \]

\[A_i \in \mathbb{M}_n(k) \]

Notation: \([A_1, \ldots, A_m]\)

Definition

Rational solution: vector \(Y \in K^n \) such that \(\Delta_i(Y) = 0, \ \forall \ i. \)

Recursive process:

- Compute \(\mathcal{V} := \{ Y \in K^n ; \Delta_1(Y) = 0 \} \)
- Reduce the size (\(m \) and \(n \)) of the problem
Rational solutions of integrable connections (2)

◊ $K_1 := \overline{C}(x_2, \ldots, x_m), \ K = K_1(x_1), \ \mathcal{V} := \{ Y \in K^n ; \Delta_1(Y) = 0 \}$

◊ \mathcal{V} is a K_1-vector space stable under the action of each Δ_i.

◊ A basis can be computed using an algorithm for OD systems and viewing x_2, \ldots, x_m as transcendental constants.

Lemma

One can compute a non-singular matrix $P \in \mathbb{M}_n(K)$ such that, $\forall i$:

$$B_i := P^{-1} (A_i P - \partial_i(P)) = \begin{pmatrix} B_{i11}^{11} & B_{i12}^{12} \\ 0 & B_{i22}^{22} \end{pmatrix}, \quad B_{i11}^{11} \in \mathbb{M}_s(K).$$

Moreover, $B_{11}^{11} = 0$ and $\forall i = 2, \ldots, m$, $B_{i11}^{11} \in \mathbb{M}_s(K_1)$.
Rational solutions of integrable connections (3)

- ν_1, \ldots, ν_s K_1-basis of \mathcal{V}, $\mathcal{V} = (\nu_1 \ldots \nu_s) \in \mathbb{M}_{n \times s}(K)$

Theorem (BCEW'12)

$Y = V \Gamma \in K^n$ rat. sol. of $[A_1, \ldots, A_m]$ iff $\Gamma \in K_1^s$ rat. sol. of

$$\tilde{\Delta}_2 \Gamma = 0 \quad \text{with} \quad \tilde{\Delta}_2 := \partial_2 l_s - B_{211}$$

$$\vdots$$

$$\tilde{\Delta}_m \Gamma = 0 \quad \text{with} \quad \tilde{\Delta}_m := \partial_m l_s - B_{m11},$$

No more x_1!

\Rightarrow Recursive algorithm (with efficient method for computing B_{i11}'s)

- Complexity: worst case estimate (op. in k) \Rightarrow to be improved!

- Denominators: q irreducible factor of the denom. of a rat. sol. such that $\partial_{i_0}(q) \neq 0 \Rightarrow q | \text{denom}(A_{i_0})$ (BCEW’12)
III

Hyperexponential solutions
Exponential solutions of ordinary differential systems (1)

- C computable field of char. zero, \overline{C} its algebraic closure, $k = C(x)$ and $K = \overline{C}(x)$

$$Y' = A Y, \quad A \in M_n(k), \quad \text{denom}(A) = \prod_{i=1}^{s} q_i(x)^{r_i+1}$$

Definition

Exponential solution: $\exp(\int f \, dx) z$, where $f \in K$ and $z \in K^n$.

- **Algorithm for computing exponential solutions** (*Pfluegel'01*):
 - Compute the non-ramified local exponential parts at each sing.
 - For each combination, compute polynomial solutions

- **Bottlenecks:** large number of comb. & computations in algebraic extensions of C of large degree
\(Y' = A Y, \quad A = \frac{1}{x^{r+1}} (A_0 + A_1 x + A_2 x^2 + \cdots), \ r \in \mathbb{N}, \ A_i \in \mathbb{M}_n(\overline{C}) \)

Definition

Non-ramified local exponential part at \(x = 0 \): polynomial \(\tilde{f} \) in \(1/x \)

\[
\tilde{f} = \frac{\alpha_{p+1}}{x^{p+1}} + \frac{\alpha_p}{x^p} + \cdots + \frac{\alpha_1}{x},
\]

where \(0 \leq p \leq r \) and \(\alpha_i's \in \overline{C} \) such that there exists a formal local solution of the system of the form \(\exp(\int \tilde{f} \, dx) \tilde{z} \), where \(\tilde{z} \) is a vector of formal power series in \(x \).

◊ **Arithmetic cost** \((BCEW'12): O(n^5 \, r^3 \, \min(n, r)) \) op. in an alg. ext. of \(C \) of degree \(\leq n \) (super-reduction, Barkatou-Pfluegel’09)
Complexity estimate

\[Y' = A Y, \quad A = (a_{i,j})_{i,j} \in \mathbb{M}_n(k), \quad \text{denom}(A) = \prod_{i=1}^{s} q_i(x)^{r_i+1} \]

\[d := (r_i + 1) \deg(q_i) \quad (i=1) \]

\[r_{\infty} := \max_{i,j} \max (1 + \deg(\text{num}(a_{i,j})) - \deg(\text{den}(a_{i,j}))) , 0 \]

\[\Rightarrow \text{Exponential solutions of } Y' = A Y \ (BCEW'12): \]

- \[O(n^5 (\max_i (r_i)^2 d \sum_i \min(n, r_i) + r_{\infty}^3 \min(n, r_{\infty}))) \] op. in an alg. ext. of \(C \) of degree \(\leq n \)

- \[O(n^{\delta+3} N^2) \] op. in an alg. ext. of \(C \) of degree \(\leq n^\delta \delta! \)

(\(\delta \): number of singularities, \(N \): degree bound for all the computed polynomial solutions)
Hyperexponential solutions of integrable connections (1)

\[\Delta_1 Y = 0 \quad \text{with} \quad \Delta_1 := \partial_1 \ln - A_1, \]
\[\vdots \]
\[\Delta_m Y = 0 \quad \text{with} \quad \Delta_m := \partial_m \ln - A_m, \]

\[K = \overline{\mathbb{C}}(x_1, \ldots, x_m) \]

Definition

- *L differential extension of K* having the same field of constants.
- \(u \neq 0 \in L \) hyperexponential over \(K \): \(\forall i, f_i := \partial_i(u)/u \in K \).
- Hyperexponential solution: solution \(u z \) with \(u \) hyperexponential over \(K \) and \(z \in K^n \).

\[u \text{ hyperexponential over } K \Rightarrow \partial_j(f_i) = \partial_i(f_j), \forall i, j \]

\[u z \text{ hyperexp. sol. of } [A_1, \ldots, A_m] \]
\[\Rightarrow z \text{ rat. sol. of } [A_1 - f_1 l_n, \ldots, A_m - f_m l_n] \]
Hyperexponential solutions of integrable connections (2)

- **Recursive algorithm** as for rational solutions
 - Exp. sol. of $Y' = A_1 Y$ computed with algorithm for OD systems. Let $u z$ be such a solution
 - $f_i := \partial_i(u)/u \in K$ and $\Delta_{i,u} := \partial_i - (A_i - f_i I_n)$
 - w_1, \ldots, w_s basis of $\mathcal{W}_u = \{w \in K^n; \Delta_{1,u}(w) = 0\}$, complete it into a basis of $K^n \rightsquigarrow$ matrix $P = (W_u \ W)$

Theorem (BCEW'12)

$$Y = u W_u \Gamma_u \text{ hyperexp. sol. of } [A_1, \ldots, A_m] \text{ iff } \Gamma_u \text{ hyperexp. sol. of } [B_{11}^{21}, \ldots, B_{11}^{m1}] \text{ where } B_i = P^{-1} \left((A_i - f_i I_n) P - \partial_i(P) \right) \text{ and } B_i^{11} \in \mathbb{M}_s(K_1) \text{ denotes the first } s \times s \text{ submatrix of } B_i.$$}

- **Complexity**: worst case estimate \rightsquigarrow to be improved
- **Discard local exp. parts** involving non-rat. functions of x_j's, $j \neq 1$
IV

Implementation
Maple package **IntegrableConnections**

○ Algorithms are implemented in a Maple package called **IntegrableConnections**

- Available with some examples at http://www.ensil.unilim.fr/~cluzeau/PDS.html
- Main procedures: *RationalSolutions* (\& *Eigenring*), *HyperexponentialSolutions*
- Some adaptations of **ISOLDE** code (*Barkatou-Pfluegel*)

Demo.
Conclusions
Contributions and Perspectives

- **Summary of the contributions:**
 - **Complexity estimates** for computing rational and exponential solutions of ODE systems (in the literature of ODE systems, Grigoriev’90).
 - Algorithms for computing rational and hyperexponential solutions of integrable connections.
 - Implementation available (IntegrableConnections).

- **Perspectives:**
 - Precise complexity analysis of algorithms for integrable connections.
 - Algorithms for other types of solutions and factorization.