Telescopers for Rational and Algebraic Functions via Residues

Shaoshi Chen

Department of Mathematics
North Carolina State University, Raleigh

July 19, 2012

Joint with Manuel Kauers and Michael F. Singer
Outline

- Motivation: enumerating 3D Walks.

- **Integrability** problems:

 Given $f \in K(y, z)$, decide whether

 $$f = D_y(g) + D_z(h)$$

 for some $g, h \in K(y, z)$.

- **Telescoping** problems:

 Given $f \in k(x, y, z)$, find $L \in k(x)\langle D_x \rangle$ such that

 $$L(x, D_x)(f) = D_y(g) + D_z(h)$$

 for some $g, h \in k(x, y, z)$.

Shaoshi Chen | Telescopers and Residues
Enumerating 3D Walks

The Rook moves in a straight line as below in first quadrant of the 3D space.

\(R_n \): The number of different Rook walks from \((0, 0, 0)\) to \((n, n, n)\).
2D-diagonals

\(f(m, n) \): the number of different Rook walks from \((0, 0)\) to \((m, n)\).

\[
F(x, y) = \sum_{m,n \geq 0} f(m, n) x^m y^n = \frac{1}{1 - \frac{x}{1-x} - \frac{y}{1-y}}.
\]

The diagonal of \(F(x, y) \) is

\[
\text{diag}(F) := \sum_{n \geq 0} f(n, n) x^n.
\]

Notation: \(\mathbb{F} \) an algebraically closed field of char zero (\(= \overline{\mathbb{Q}}, \mathbb{C}, \ldots \)).

Lemma: Let \(G := y^{-1} \cdot F(y, x/y) \) and \(L(x, D_x) \) be a linear differential operator with coefficients in \(\mathbb{F}(x) \). Then

\[
L(x, D_x)(G) = D_y(H) \quad \text{with} \quad H \in \mathbb{F}(x, y) \quad \Rightarrow \quad L(\text{diag}(F)) = 0
\]
Telescopers for Rational Functions: The Bivariate Case

Let $\mathbb{F}(x)\langle D_x \rangle$ be the ring of linear differential operators in x with coefficients in $\mathbb{F}(x)$.

Problem. For $f \in \mathbb{F}(x, y)$, find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that

$$L(x, D_x)(f) = D_y(g) \quad \text{for some } g \in \mathbb{F}(x, y).$$

Telescopers

Simpler Problem. For $h \in \mathbb{F}(x, y)$, decide whether

$$h = D_y(g) \quad \text{for some } g \in \mathbb{F}(x, y)$$

Answer. $h = D_y(g)$ iff $\text{res}_y(h, \beta) = 0$ for any root β of the $\text{den}(h)$.

Idea. To find $L \in \mathbb{F}(x)\langle D_x \rangle$ such that $h = L(f)$ has only zero residues.
Telescoping via Residues: The Bivariate Rational Case

Hermite Reduction.

\[f = D_y(g_1) + \frac{A}{B}, \quad \text{where } \deg_y(A) < \deg_y(B) \text{ and } B \text{ squarefree.} \]

Rothstein-Trager Resultant. \(R(x, z) := \text{resultant}_y(B, A - zD_y(B)) \).

\[R(x, \text{res}_y(A/B, \beta)) = 0 \quad \text{for any root } \beta \text{ of } B \text{ in } \overline{F(x)}. \]

Theorem (Abel 1827). There exists \(L \in \overline{F(x)}\langle D_x \rangle \) s.t. \(L(\gamma) = 0 \) for any root \(\gamma \in \overline{F(x)} \) of \(R(x, z) \).

\[L(\text{res}_y(f, \beta)) = \text{res}_y(L(f), \beta) = 0 \quad (\forall \beta) \quad \Rightarrow \quad L(f) = D_y(g). \]
Telescopers for 2D Rook Walks

For the 2D Rook walks, the rational function is

\[
f := \frac{(-1 + y)(-y + x)}{y(y - 2x - 2y^2 + 3xy)}
\]

Resultant: The Rothstein-Trager Resultant is

\[
R(x, z) := (-x + 2zx)(40z^2x^2 + x - 2x^2 + x^3 - 4z^2x - 36z^2x^3)
\]

So the residues of \(f \) w.r.t. \(y \) are respectively

\[
r_1 = \frac{1}{2}, \quad r_2 = \frac{\sqrt{(9x - 1)(x - 1)}}{18x - 2}, \quad r_3 = -\frac{\sqrt{(9x - 1)(x - 1)}}{18x - 2}
\]

Annihilators for residues: \(L_1 = D_x \) and

\[
L_2 = L_3 = (9x^2 - 10x + 1)D_x + (18x - 14)
\]

Finally, the telescoper for \(f \) is

\[
L := (9x^2 - 10x + 1)D_x^2 + (18x - 14)D_x.
\]
Recurrences

$R(n)$: the number of different Rook walks from $(0, 0)$ to (n, n).

Let S_n be the shift operator defined by $S_n(R(n)) = R(n + 1)$.

\[
L(x, D_x) \left(\sum_{n \geq 0} R(n)x^n \right) = 0 \quad \Rightarrow \quad P(n, S_n)(R(n)) = 0.
\]

For the 2D Rook walks, we get the linear recurrence:

\[
R(n + 2) = \frac{(-10n - 14)R(n + 1) + 9nR(n)}{n + 2} \quad (R(1) = 2, \ R(2) = 14).
\]

Running the recurrence, $R(n)$ is as follows.

2, 14, 106, 838, 6802, 56190, 470010, 3968310, ... \quad \text{OEIS:A051708}
Enumerating 3D Walks

The Rook moves in 3-dimensional space.

Question: How many different Rook walks from \((0, 0, 0)\) to \((n, n, n)\)?
3D-diagonals

\(f(m, n, k) \): the number of different Rook walks from \((0, 0, 0)\) to \((m, n, k)\).

\[
F(x, y, z) = \sum_{m,n \geq 0} f(m, n, k) x^m y^n z^k = \frac{1}{1 - x - y - z}.
\]

The diagonal of \(F(x, y, z)\) is

\[
\text{diag}(F) := \sum_{n \geq 0} f(n, n, n) x^n.
\]

Lemma: Let \(\tilde{F} := (yz)^{-1} \cdot F(y, z/y, x/z)\) and \(L(x, D_x) \in \mathbb{F}(x)\langle D_x \rangle\). Then

\[
L(x, D_x)(\tilde{F}) = D_y(G) + D_z(H) \quad \text{with} \quad G, H \in \mathbb{F}(x, y, z) \Rightarrow L(\text{diag}(F)) = 0.
\]

Telescopers and Residues
Telescoping Problems

Telescopers for trivariate rational functions:
Given $f \in \mathbb{F}(x, y, z)$, find $L \in \mathbb{F}(x) \langle D_x \rangle$ such that

$$L(x, D_x)(f) = D_y(g) + D_z(h) \quad \text{for some } g, h \in \mathbb{F}(x, y, z).$$

Telescopers for bivariate algebraic functions:
Given $\alpha(x, y)$ algebraic over $\mathbb{F}(x, y)$, find $L \in \mathbb{F}(x) \langle D_x \rangle$ such that

$$L(x, D_x)(\alpha) = D_y(\beta) \quad \text{for some algebraic } \beta(x, y) \text{ over } \mathbb{F}(x, y).$$

Goal: The two telescoping problems above are equivalent!
Integrability Problems

Rational Integrability:

Given $f(y, z) \in \mathbb{E}(y, z)$, decide

$$f = D_y(g) + D_z(h) \text{ for some } g, h \in \mathbb{E}(y, z).$$

If such g, h exist, we say that f is rational Integrable w.r.t. y and z.

Algebraic Integrability:

Given $\alpha(y)$ algebraic over $\mathbb{E}(y)$, decide

$$\alpha = D_y(\beta) \text{ for some algebraic } \beta \text{ over } \mathbb{E}(y).$$

If such β exists, we say that α is algebraic Integrable w.r.t. y.

Goal: The two Integrable problems above are equivalent!
Residues

Definition. Let $f \in \mathbb{F}(x, y)(z)$. The *residue* of f at β_i w.r.t. z, denoted by $\text{res}_z(f, \beta_i)$, is the coefficient $\alpha_{i,1}$ in

$$f = \sum_{i=1}^{n} \sum_{j=1}^{m_i} \frac{\alpha_{i,j}}{(z - \beta_i)^j}, \quad \text{where } \alpha_{i,j}, \beta_i \in \overline{\mathbb{F}(x, y)}.$$

Lemma. Let $f \in \mathbb{F}(x, y)(z)$ and $\beta \in \overline{\mathbb{F}(x, y)}$.

- $\partial(\text{res}_z(f, \beta)) = \text{res}_z(\partial(f), \beta)$ with $\partial \in \{D_x, D_y\}$.
- $f = D_z(g) \iff$ All residues of f w.r.t. z are zero.

Remark. The second assertion is not true for algebraic functions!!!
Equivalence between Two Integrability Problems

Theorem (Integrability). Let \(f = A/B \in \mathbb{F}(x)(y, z) \). Then

\[
f = D_y(g) + D_z(h) \iff \text{res}_z(f, \beta) = D_y(\gamma \beta) \quad \text{for all} \ \beta \text{ s.t. } B(\beta) = 0.
\]

Example 1. Let \(f = (x + y + z)^{-1} \). Since \(\text{res}_z(f, -x - y) = 1 = D_y(y) \), \(f \) is rational Integrable w.r.t. \(y \) and \(z \). In fact,

\[
f = D_y \left(\frac{x + y}{x + y + z} \right) + D_z \left(-\frac{x + y}{x + y + z} \right).
\]

Example 2. Let \(f = (xyz)^{-1} \). Since \(\text{res}_z(f, 0) = (xy)^{-1} \) is not algebraic integrable, \(f \) is not rational Integrable w.r.t. \(y \) and \(z \).
Theorem (Telescoping). Let $f \in \mathbb{F}(x, y, z)$ and $L \in \mathbb{F}(x) \langle D_x \rangle$. Then

$L(x, D_x)$ is a telescoper for f w.r.t. y and z

\uparrow

$L(x, D_x)$ is a telescoper for every residue of f w.r.t. z

Remark.

$L_i(x, D_x)(\alpha_i) = D_y(\beta_i), \ 1 \leq i \leq n$

\Downarrow

$L = \text{LCLM}(L_1, L_2, \ldots, L_n)$ is a telescoper for all α_i.
Differentials and Residues

Let $K = \mathbb{F}(x, y)(\alpha)$ where α is an algebraic function over $\mathbb{F}(x, y)$. Think of $\alpha(x, y)$ as a parameterized family of algebraic functions of y (with parameter x).

Differentials.

$$\Omega_{K/\mathbb{F}(x)} := \{ \beta \, dy \mid \beta \in K \}.$$

- $df = 0$ for all $f \in \mathbb{F}(x)$ and $D_x(\beta dy) = D_x(\beta)dy$.

Residues. Let \mathcal{P} be a place of K (with no ramification). Then any $\beta \in K$ has a \mathcal{P}-adic expansion

$$\beta = \sum_{i \geq \rho} a_i t^i, \quad \text{where } \rho \in \mathbb{Z}, \, a_i \in \overline{\mathbb{F}(x)} \text{ and } t \in K.$$

The residues of β at \mathcal{P} is a_{-1}, denoted by $\text{res } \mathcal{P}(\beta)$.

- $\text{res } \mathcal{P}(D_x(\beta)) = D_x(\text{res } \mathcal{P}(\beta))$.

Differential Equations for Residues

Let \(K = \mathbb{F}(x, y)(\alpha) \) and \(\beta = A/B \) with \(A \in \mathbb{F}(x)[y, \alpha] \) and \(B \in \mathbb{F}(x)[y] \). Let \(B^* \) be the squarefree part of \(B \) w.r.t. \(y \).

Theorem. There exists \(L \in \mathbb{F}(x)\langle D_x \rangle \) such that all residues of \(L(\alpha) \) are zero and

\[
\deg_{D_x}(L) \leq [K : \mathbb{F}(x, y)] \cdot \deg_y(B^*).
\]

Definition. A differential \(\omega \in \Omega_{K/\mathbb{F}(x)} \) is of **second kind** if all residues of \(\omega \) are zero.

Lemma.

- If \(\omega \) is exact i.e. \(\omega = d(\beta) \), then \(\omega \) is of second kind.
- Let \(\Phi_{K/\mathbb{F}(x)} := \{ \text{differentials of second kind} \} / \{ \text{exact differentials} \} \). Then
 \[
 \dim_{\mathbb{F}(x)}(\Phi_{K/\mathbb{F}(x)}) = 2 \cdot \text{genus}(K).
 \]
Telescopers for Bivariate Algebraic Functions

Algorithm. Given $\alpha(x, y)$ algebraic over $\mathbb{F}(x, y)$, do

1. Compute $L_1 \in \mathbb{F}(x)\langle D_x \rangle$ such that $\omega = L_1(\alpha) dy$ is of second kind.

2. Find $a_0, \ldots, a_{2g} \in \mathbb{F}(x)$ with $g := \text{genus}(K)$ with $K = \mathbb{F}(x, y)(\alpha)$, not all zero, such that

$$a_{2g} D_x^{2g}(\omega) + \cdots + a_0 \omega = d(\beta) \quad \text{for some } \beta \in K.$$

Remark.

- If $\alpha \in \mathbb{F}(x, y)$, Step 2 is not needed since $g = 0$.
- If ω is of second kind, so is $D_x^i(\omega)$ for all $i \in \mathbb{N}$.
Telescopers for 3D Rook Walks

Transformation. \(F = P/Q := (yz)^{-1}f(y, z/y, x/z) \).

\[
\begin{align*}
\frac{P}{Q} &= \frac{(-1 + y)(y - z)(-z + x)}{zy (zy - 2 yx - 2 z^2 + 3 xz - 2 y^2 z + 3 y^2 x + 3 z^2 y - 4 zyx)}
\end{align*}
\]

Residues. Roots of \(R(x, y, u) := \text{Resultant}_z(Q, P - u \cdot D_z(Q)) \) are

\[
\begin{align*}
r_1 &= \frac{y - 1}{y(3y - 2)}, \quad r_2 = -r_3 = \frac{(y - 1)^2}{y(3y - 2)\sqrt{-4y^3 + 16xy^2 + 4y^2 - y - 24xy + 9x}}.
\end{align*}
\]

Telescopers. \(L_1 = D_x \) and \(L_2 = L_3 \) with

\[
\begin{align*}
L_2 &= D_x^3 + \frac{(4608 x^4 - 6372 x^3 + 813 x^2 + 514 x - 4) D_x^2}{x (-2 + 121 x + 475 x^2 - 1746 x^3 + 1152 x^4)} \\
&\quad + \frac{4 (576 x^3 - 801 x^2 - 108 x + 74) D_x}{x (-2 + 121 x + 475 x^2 - 1746 x^3 + 1152 x^4)}.
\end{align*}
\]
Recurrences for 3D Rook Walks

\[L = \text{LCLM}(L_1, L_2, L_3) \] is a telescopers for \(F(x, y, z) \).

\[\downarrow \]

\[L(x, D_x) \left(\sum_n f(n, n, n) x^n \right) = 0 \]

Recurrence. Let \(r(n) := f(n, n, n) \). From \(L(x, D_x) \) via gfun, we get

\[
(1152n^2 + 1152n^3)r(n) + (-7830n - 3204 - 6372n^2 - 1746n^3)r(n + 1) + (2957n + 762 + 2238n^2 + 475n^3)r(n + 2) + (4197n + 4698 + 1240n^2 + 121n^3)r(n + 3) + (-22n^2 - 80n - 96 - 2n^3)r(n + 4) = 0.
\]

With initial values \(r(0) = 1, r(1) = 6, r(2) = 222, r(3) = 9918 \), we get

\[1, 6, 222, 9918, 486924, 25267236, 1359631776, 75059524392, \ldots \]
Implementation and Experiments

Timings. We compare different algorithms for examples in combinatorics.

<table>
<thead>
<tr>
<th></th>
<th>Chyzak</th>
<th>Koutschan</th>
<th>Residue</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D Rook 1</td>
<td>3.48</td>
<td>24.5</td>
<td>0.59</td>
</tr>
<tr>
<td>3D Rook 2</td>
<td>31</td>
<td>182</td>
<td>2.3</td>
</tr>
<tr>
<td>3D Queen 1</td>
<td>11805</td>
<td>> 30h</td>
<td>1203</td>
</tr>
<tr>
<td>3D Queen 2</td>
<td>12109</td>
<td>> 30h</td>
<td>1186</td>
</tr>
<tr>
<td>Random example</td>
<td>221</td>
<td>1232</td>
<td>26</td>
</tr>
</tbody>
</table>

Figure: Timings are in seconds.

For more examples, please visit

http://www.risc.jku.at/people/mkauers/residues/
Summary

Equivalence.

\[L(x, D_x)(f) = D_y(g) + D_z(h), \quad f, g, h \in \mathbb{F}(x, y, z) \]

\[\uparrow \]

\[L(x, D_x)(\alpha) = D_y(\beta) \quad \text{for any residue } \alpha \text{ of } f \text{ w.r.t. } z. \]

Note. One can also reduce rational \(m \) vars to algebraic \(m - 1 \) vars.

Order Bound. Let \(K = \mathbb{F}(x, y)(\alpha) \) and \(n \) be the number of poles of \(\alpha \).

\[L(x, D_x)(\alpha) = D_y(\beta) \quad \Rightarrow \quad \text{ord}(L) \leq [K : \mathbb{F}(x, y)] \cdot n + 2 \cdot \text{genus}(K). \]

Future Work. Walks in higher dimension (4D, 5D, ...).