On the Structure of Compatible Rational Functions

Ziming Li

Key Laboratory of Mathematics Mechanization
Chinese Academy of Sciences, Beijing

joint work with S. Chen, R. Feng, and G. Fu.
Outline

1. Bivariate compatible rational functions
2. General case
3. A structure theorem
4. Multiplicative decomposition of hyperexp.-hypergeom. elements
5. Applications
6. Algebraic dependence of hyperexp.-hypergeom. elements

Note. \(\mathbb{F} \) is an algebraically closed field of characteristic zero.
Bivariate case 1: differential and difference

Let

\[\delta : \mathbb{F}(t, x) \to \mathbb{F}(t, x) \quad \text{and} \quad \sigma : \mathbb{F}(t, x) \to \mathbb{F}(t, x) \]

\[f(t, x) \mapsto \frac{\partial f(t, x)}{\partial t} \quad \text{and} \quad f(t, x) \mapsto f(t, x + 1) \]

A first-order system

\[
\begin{cases}
\delta(z) = u z, \\
\sigma(z) = v z,
\end{cases}
\]

where \(u, v \in \mathbb{F}(t, x) \) with \(v \neq 0 \),

has a nonzero solution iff the following compatibility condition (CC) holds:

\[\frac{\delta(v)}{v} = \sigma(u) - u. \]

\[
\begin{cases}
\sigma \circ \delta(z) = \sigma(u) v z \\
\delta \circ \sigma(z) = (\delta(v) + uv) z
\end{cases} \quad \Rightarrow \quad \text{the CC.}
\]
Definition. \(u, v \in \mathbb{F}(t, x) \) are compatible w.r.t. \(\{\delta, \sigma\} \) if \(v \neq 0 \) and
\[
\frac{\delta(v)}{v} = \sigma(u) - u.
\]

Lemma. (R. Feng, M. Singer, and M. Wu, 2010)
\(u, v \in \mathbb{F}(t, x) \) are compatible w.r.t. \(\{\delta, \sigma\} \) iff \(\exists f \in \mathbb{F}(t, x), \alpha, \beta \in \mathbb{F}(t), \lambda \in \mathbb{F}(x) \) s.t.
\[
u = \frac{\delta(f(t, x))}{f(t, x)} + x\frac{\delta(\alpha(t))}{\alpha(t)} + \beta(t)
\]
and
\[
u = \frac{\sigma(f(t, x))}{f(t, x)} \alpha(t) \lambda(x).
\]

Corollary. A solution of \(\{\delta(z) = u z, \sigma(z) = v z\} \) can be written as
\[
f(t, x) \alpha(t)^x \exp \left(\int \beta(t) dt \right) T(x),
\]
where \(\delta(T) = 0 \) and \(\sigma(T) = \lambda T \).
Bivariate case 2: differential and q-difference

Let
\[\delta : \mathbb{F}(t, y) \to \mathbb{F}(t, y) \quad \text{and} \quad \tau : \mathbb{F}(t, y) \to \mathbb{F}(t, y) \]
\[f(t, y) \mapsto \frac{\partial f(t, y)}{\partial t} \quad \text{and} \quad f(t, y) \mapsto f(t, qy), \]
where \(q \in \mathbb{F} \) is not a root of unity.

A first-order system:
\[
\begin{align*}
\delta(z) &= uz, \\
\tau(z) &= wz,
\end{align*}
\]
\[u, w \in \mathbb{F}(t, y) \text{ with } w \neq 0, \]
has a nonzero solution iff the following CC holds:
\[\frac{\delta(w)}{w} = \tau(u) - u. \]
Definition. $u, w \in \mathbb{F}(t, y)$ are compatible w.r.t. $\{\delta, \tau\}$ if $w \neq 0$ and

$$\frac{\delta(w)}{w} = \tau(u) - u.$$

Lemma. (a q-analogue of FSW Lemma)

$u, w \in \mathbb{F}(t, y)$ are compatible w.r.t. $\{\delta, \tau\}$ iff $\exists f \in \mathbb{F}(t, y), \beta \in \mathbb{F}(t), \mu \in \mathbb{F}(y)$ s.t.

$$u = \frac{\delta(f(t, y))}{f(t, y)} + \beta(t) \quad \text{and} \quad v = \frac{\tau(f(t, y))}{f(t, y)} \mu(y).$$

Corollary. A solution of $\{\delta(z) = u z, \tau(z) = w z\}$ can be written as

$$f(t, y) \exp \left(\int \beta(t) dt \right) Q(y),$$

where $\delta(Q) = 0$ and $\tau(Q) = \mu Q$.
Comparison

Differential and difference.

Fact. For $g \in \mathbb{F}(t, x)$,

$$\sigma(g) - g \in \mathbb{F}(t) \iff g \in \mathbb{F}(t)[x] \text{ and } \deg_x g \leq 1.$$

$$\downarrow$$

$$u = \frac{\delta(f(t, x))}{f(t, x)} + x \frac{\delta(\alpha(t))}{\alpha(t)} + \beta(t) \quad \text{and} \quad v = \frac{\sigma(f(t, x))}{f(t, x)} \alpha(t) \lambda(x).$$

Differential and q-difference.

Fact. For $g \in \mathbb{F}(t, y)$,

$$\tau(g) - g \in \mathbb{F}(t) \iff g \in \mathbb{F}(t).$$

$$\downarrow$$

$$u = \frac{\delta(f(t, y))}{f(t, y)} + \beta(t) \quad \text{and} \quad w = \frac{\tau(f(t, y))}{f(t, y)} \mu(y).$$
Bivariate Case III: difference and q-difference

Let

\[\sigma : \mathbb{F}(x, y) \to \mathbb{F}(x, y) \quad \tau : \mathbb{F}(x, y) \to \mathbb{F}(x, y) \]

and

\[f(x, y) \mapsto f(x + 1, y) \quad f(x, y) \mapsto f(x, qy), \]

where \(q \in \mathbb{F} \) is not a root of unity.

For \(v, w \in \mathbb{F}(x, y) \) with \(vw \neq 0 \), the system:

\[
\begin{align*}
\sigma(z) &= vz \\
\tau(z) &= wz
\end{align*}
\]

has a nonzero solution iff the following \(CC \) holds:

\[\frac{\sigma(w)}{w} = \frac{\tau(v)}{v}. \]
Definition. $v, w \in \mathbb{F}(t, x)$ are compatible w.r.t. $\{\sigma, \tau\}$ if $vw \neq 0$ and

$$\frac{\sigma(w)}{w} = \frac{\tau(v)}{v}.$$

Lemma. v and w are compatible w.r.t. $\{\sigma, \tau\}$ iff there exist $f \in \mathbb{F}(x, y)$, $\lambda \in \mathbb{F}(x)$, $\mu \in \mathbb{F}(y)$ s.t.

$$v = \frac{\sigma(f(x, y))}{f(x, y)} \lambda(x) \quad \text{and} \quad w = \frac{\tau(f(x, y))}{f(x, y)} \mu(y).$$

Corollary. A solution of

$$\begin{cases}
\sigma(z) = vz \\
\tau(z) = wz
\end{cases}$$

can be written as

$$c f(x, y) T(x) Q(y),$$

where $c \in \mathbb{F}$, $\sigma(T) = \lambda T$ and $\tau(Q) = \mu Q$.
Survey on mixed cases

<table>
<thead>
<tr>
<th>Operators</th>
<th>CC</th>
<th>Rational solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta = \frac{\partial}{\partial t}$</td>
<td>$\frac{\delta(v)}{v} = \sigma(u) - u$</td>
<td>$u = \frac{\delta(f)}{f} + x\frac{\delta(\alpha)}{\alpha} + \beta$, $v = \frac{\sigma(f)}{f} \alpha \lambda$</td>
</tr>
<tr>
<td>$\sigma : x \mapsto x + 1$</td>
<td></td>
<td>where $f \in \mathbb{F}(t,x)$, $\alpha, \beta \in \mathbb{F}(t)$, $\lambda \in \mathbb{F}(x)$</td>
</tr>
<tr>
<td>$\delta = \frac{\partial}{\partial t}$, $\tau : y \mapsto qy$</td>
<td>$\frac{\delta(w)}{w} = \tau(u) - u$</td>
<td>$u = \frac{\delta(f)}{f} + \beta$, $w = \frac{\tau(f)}{f} \mu$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>where $f \in \mathbb{F}(t,y)$, $\beta \in \mathbb{F}(t)$, $\mu \in \mathbb{F}(y)$</td>
</tr>
<tr>
<td>$\sigma : x \mapsto x + 1$, $\tau : y \mapsto qy$</td>
<td>$\frac{\sigma(w)}{w} = \frac{\tau(v)}{v}$</td>
<td>$v = \frac{\sigma(f)}{f} \lambda$, $w = \frac{\tau(f)}{f} \mu$,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>where $f \in \mathbb{F}(x,y)$, $\lambda \in \mathbb{F}(x)$, $\mu \in \mathbb{F}(y)$.</td>
</tr>
</tbody>
</table>
General case

Let $t = (t_1, \ldots, t_\ell)$, $x = (x_1, \ldots, x_m)$ and $y = (y_1, \ldots, y_n)$.

For $i = 1, \ldots, \ell$,

$$
\delta_i : \mathbb{F}(t, x, y) \longrightarrow \mathbb{F}(t, x, y) \\
f \mapsto \frac{\partial f}{\partial t_i}.
$$

For $j = 1, \ldots, m$,

$$
\sigma_j : \mathbb{F}(t, x, y) \longrightarrow \mathbb{F}(t, x, y) \\
f(t, x_1, \ldots, x_m, y) \mapsto f(t, x_1, \ldots, x_{j-1}, x_j + 1, x_{j+1}, \ldots, x_m, y).
$$

For $k = 1, \ldots, n$,

$$
\tau_k : \mathbb{F}(t, x, y) \longrightarrow \mathbb{F}(t, x, y) \\
f(t, x, y_1, \ldots, y_n) \mapsto f(t, x, y_1, \ldots, y_{k-1}, q_k y_k, y_{k+1}, \ldots, y_n),
$$

where $q_1, \ldots, q_n \in \mathbb{F}^\times$ s.t. $q_1^{e_1} \cdots q_n^{e_n} \neq 1$ unless $e_1 = \cdots = e_n = 0$.

Compatible rational functions

\[\Delta = \{ \delta_1, \ldots, \delta_\ell, \sigma_1, \ldots, \sigma_m, \tau_1, \ldots, \tau_n \} . \]

Definition. A sequence of rational functions

\[u_1, \ldots, u_\ell, v_1, \ldots, v_m, w_1, \ldots, w_n \]

is compatible w.r.t. \(\Delta \) if

\[v_1 \cdots v_m w_1 \cdots w_n \neq 0 , \]

and the following six sets of CC’s hold:

<table>
<thead>
<tr>
<th>Unmixed</th>
<th>Mixed</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\delta_i(u_j) = \delta_j(u_i), \quad 1 \leq i < j \leq \ell]</td>
<td>[\frac{\delta_i(v_j)}{v_j} = \sigma_j(u_i) - u_i, \quad i = 1, \ldots, \ell, \quad j = 1, \ldots, m]</td>
</tr>
<tr>
<td>[\frac{\sigma_i(v_j)}{v_j} = \frac{\sigma_j(v_i)}{v_i}, \quad 1 \leq i < j \leq m]</td>
<td>[\frac{\delta_i(w_k)}{w_k} = \tau_k(u_i) - u_i, \quad i = 1, \ldots, \ell, \quad k = 1, \ldots, n]</td>
</tr>
<tr>
<td>[\frac{\tau_i(w_j)}{w_j} = \frac{\tau_j(w_i)}{w_i}, \quad 1 \leq i < j \leq n]</td>
<td>[\frac{\sigma_j(w_k)}{w_k} = \tau_k(v_j), \quad j = 1, \ldots, m, \quad k = 1, \ldots, n]</td>
</tr>
</tbody>
</table>
A structure theorem

Theorem. A sequence of rational functions $u_1, \ldots, u_\ell, v_1, \ldots, v_m, w_1, \ldots, w_n$ is compatible iff, for all i, j, k with $1 \leq i \leq \ell, 1 \leq j \leq m$ and $1 \leq k \leq n$,

$$u_i = \frac{\delta_i(f(t, x, y))}{f(t, x, y)} + \sum_{j=1}^{m} x_j \frac{\delta_i(\alpha_j(t))}{\alpha_j(t)} + \beta_i(t),$$

$$v_j = \frac{\sigma_j(f(t, x, y))}{f(t, x, y)} \alpha_j(t) \lambda_j(x),$$

$$w_k = \frac{\tau_k(f(t, x, y))}{f(t, x, y)} \mu_k(y),$$

where $f \in \mathbb{F}(t, x, y)$, $\alpha_j, \beta_i \in \mathbb{F}(t)$, $\lambda_j \in \mathbb{F}(x)$, $\mu_k \in \mathbb{F}(y)$,

$\beta_1(t), \ldots, \beta_\ell(t)$ are compatible w.r.t. $\{\delta_1, \ldots, \delta_\ell\}$,

$\lambda_1(x), \ldots, \lambda_m(x)$ are compatible w.r.t. $\{\sigma_1, \ldots, \sigma_m\}$, and

$\mu_1(y), \ldots, \mu_n(y)$ are compatible w.r.t. $\{\tau_1, \ldots, \tau_n\}$.
Survey on unmixed cases

<table>
<thead>
<tr>
<th>Systems</th>
<th>CC’s</th>
<th>Structure</th>
</tr>
</thead>
</table>
| \(\left\{ \begin{array}{l} \delta_1(z) = u_1 z \\
| \vdots | \\
| \delta_\ell(z) = u_\ell z, \end{array} \right. \) | \(\delta_i(u_j) = \delta_j(u_i), \) | Christoper’s theorem: |
| \(u_1, \ldots, u_\ell \in \mathbb{F}(t) \) | \(1 \leq i < j \leq \ell \) | \(u_i = \delta_i(g) + \sum_k c_k \frac{\delta_i(g_k)}{g_k}, \) where \(c_k \in \mathbb{F} \) and \(f, g_k \in \mathbb{F}(t) \) |

<table>
<thead>
<tr>
<th>Systems</th>
<th>CC’s</th>
<th>Structure</th>
</tr>
</thead>
</table>
| \(\left\{ \begin{array}{l} \sigma_1(z) = v_1 z \\
| \vdots | \\
| \sigma_m(z) = v_m z, \end{array} \right. \) | \(\frac{\sigma_i(v_j)}{v_j} = \frac{\sigma_j(v_i)}{v_i} \) | Ore-Sato’s theorem: |
| \(v_1, \ldots, v_m \in \mathbb{F}(x) \) | \(1 \leq i < j \leq m \) | \(v_j = \frac{\sigma_j(g)}{g} \prod_{s \in S} \prod_{k=0}^{s_j} r_s(s \cdot x + k) \) where \(f \in \mathbb{F}(x), S \subset \mathbb{Z}^m \) and \(r_s \in \mathbb{F}(z). \) |

<table>
<thead>
<tr>
<th>Systems</th>
<th>CC’s</th>
<th>Structure</th>
</tr>
</thead>
</table>
| \(\left\{ \begin{array}{l} \tau_1(z) = w_1 z \\
| \vdots | \\
| \tau_n(z) = w_n z, \end{array} \right. \) | \(\frac{\tau_i(w_j)}{w_j} = \frac{\tau_j(w_i)}{w_i} \) | A \(q \)-analogue |
| \(w_1, \ldots, w_n \in \mathbb{F}(y) \) | \(1 \leq i < j \leq n \) | by I. Gel’fand, M. Graev, and V. Retakh. when \(q_1 = \cdots = q_n \) |
Hyperexponential-Hypergeometric elements

Definition. A first-order system

\[\{ \delta_i(z) = u_i z, \ \sigma_j(z) = v_j z, \ \tau_k(z) = w_k z \mid i = 1, \ldots, \ell, \ j = 1, \ldots, m, \ k = 1, \ldots, n \} \quad (*) \]

is compatible if \(u_1, \ldots, u_\ell, v_1, \ldots, v_m, w_1, \ldots, w_n \) are compatible w.r.t. \(\Delta \).

Definition. A nonzero solution of (*) is called a hyperexponential-hypergeometric element, abbr. as \(H \)-element.
Corollary. An H-element can be written as

\[a \text{ rational function} \times (\alpha_1(t)^{x_1} \cdots \alpha_m(t)^{x_m}) \times E(t) \mathcal{G}(x) \mathcal{Q}(y), \]

where

- E is hyperexp. w.r.t. $\{\delta_1, \ldots, \delta_\ell\}$,
- \mathcal{G} hypergeom. w.r.t. $\{\sigma_1, \ldots, \sigma_m\}$,
- \mathcal{Q} q-hypergeom. w.r.t. $\{\tau_1, \ldots, \tau_n\}$.
Standard representations

Let \prec be a monomial ordering in $\mathbb{F}[t, x, y]$.

Definition. Given a sequence R of compatible rational functions

$$u_1, \ldots, u_\ell, v_1, \ldots, v_m, w_1, \ldots, w_n$$

in $\mathbb{F}(t, x, y)$, a sequence S of rational functions:

$$f, \alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_\ell, \lambda_1, \ldots, \lambda_m, \mu_1, \ldots, \mu_n$$

is the **standard representation** of R if

(i) the members of R and S satisfy the relations in the structure theorem;

(ii) f has no nontrivial factors in $\mathbb{F}[t] \cup \mathbb{F}[x] \cup \mathbb{F}[y]$;

(iii) $f, \alpha_1, \ldots, \alpha_m$ are monic w.r.t. \prec.
Computing a representation

For brevity, let $n = 0$.

Algorithm. Given compatible rational functions $u_1, \ldots, u_\ell, v_1, \ldots, v_m$, compute $f \in \mathbb{F}(t, x)$, $\alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_\ell \in \mathbb{F}(t)$, and $\lambda_1, \ldots, \lambda_m \in \mathbb{F}(x) \in \mathbb{F}(x)$ s.t.

$$u_i = \frac{\delta_i(f)}{f} + \sum_{j=1}^{m} x_j \frac{\delta_i(\alpha_j)}{\alpha_j} + \beta_i \quad \text{for } 1 \leq i \leq \ell,$$

and

$$v_j = \frac{\sigma_j(f)}{f} \alpha_j \lambda_j \quad \text{for } 1 \leq j \leq m.$$
(1) [Determine α_j and λ_j.]

(1.1) For all j, compute f_j, a_j, b_j s.t.

$$v_j = f_j a_j b_j,$$

where $f_j \in \mathbb{F}(t, x)$ has no factors in $\mathbb{F}(t) \cup \mathbb{F}(x)$, $a_j \in \mathbb{F}(t)$ is monic, and $b_j \in \mathbb{F}(x)$;

(1.2) Compute $g_j, r_j \in \mathbb{F}(t, x, y)$ s.t.

$$f_j = \frac{\sigma_j(g_j)}{g_j} r_j \text{ with } r_j \text{ being } \sigma_j\text{-reduced};$$

(1.3) Set $\alpha_j = a_j$ and $\lambda_j = r_j b_j$;

(2) [Determine f.] Set f to be a nonzero solution of the system:

$$\left\{ \sigma_j(z) = \frac{\sigma_j(g_j)}{g_j} z \mid j = 1, \ldots, m \right\}.$$

(3) [Determine β_i] For all i, set

$$\beta_i = u_i - \frac{\delta_i(f)}{f} - \sum_{j=1}^{m} x_j \frac{\delta_i(\alpha_j)}{\alpha_j};$$

(4) Return: $f, \alpha_1, \ldots, \alpha_m, \beta_1, \ldots, \beta_\ell, \lambda_1, \ldots, \lambda_m$.
Example

Consider an H-element $h(t, x_1, x_2, x_3, x_4)$ with certificates

\[u = \frac{2x_1 + x_2 t - x_2}{t^2 - 1} \quad u = x_1 \frac{\delta(\alpha_1)}{\alpha_1} + x_2 \frac{\delta(\alpha_2)}{\alpha_2} \]

\[v_1 = \frac{(t-1)(x_2-x_1)(x_2+4-x_1)}{(x_3+x_1+1)(x_1+1)(t+1)} \quad v_1 = \alpha_1 \lambda_1 \]

\[v_2 = \frac{(t+1)(x_2+x_4+1)(x_2+x_3+1)}{2(x_2-x_1+1)(x_2+x_4-x_1+1)} \quad \sim \quad v_2 = \alpha_2 \cdot \lambda_2 \]

\[v_3 = \frac{x_2+x_3+1}{x_3+x_1+1} \quad v_3 = \lambda_3 \]

\[v_4 = \frac{x_2+x_4+1}{x_2+x_4-x_1+1} \quad v_4 = \lambda_4 \]

where

\[\alpha_1 = \frac{t-1}{t+1}, \quad \alpha_2 = \frac{t+1}{2}, \]

\[\lambda_1 = \frac{(x_2-x_1)(x_2+x_4-x_1)}{(x_3+x_1+1)(x_1+1)}, \quad \lambda_2 = \frac{(x_2+x_4+1)(x_2+x_3+1)}{(x_2-x_1+1)(x_2+x_4-x_1+1)}, \quad \lambda_3 = \frac{x_2+x_3+1}{x_3+x_1+1}, \quad \lambda_4 = \frac{x_2+x_4+1}{x_2+x_4-x_1+1}. \]

A multiplicative form of h is

\[h = \left(\frac{t - 1}{t + 1} \right)^{x_1} \left(\frac{t + 1}{2} \right)^{x_2} (x_2 + x_3) (x_2 + x_4). \]
Is \(h \) in \(\mathbb{F}(t, x, y) \)?

Let \(h \) be an \(H \)-element of the form:

\[
h = f(t, x, y) \alpha_1(t)^{x_1} \cdots \alpha_m(t)^{x_m} \mathcal{E}(t) \mathcal{G}(x) \mathcal{Q}(y),
\]

where the \(\alpha_j \)'s are monic

Prop. \(h \in \mathbb{F}(t, x, y) \iff \alpha_1 = \cdots = \alpha_m = 1, \ \mathcal{E}(t) \in \mathbb{F}(t), \ \mathcal{G}(x) \in \mathbb{F}(x) \) and \(\mathcal{Q}(y) \in \mathbb{F}(y) \).

Facts:

1. \(\mathcal{E}(t) \in \mathbb{F}(t) \iff \frac{\delta_i(\mathcal{E})}{\delta_i} = \frac{\delta_i(g_i)}{g_i} \) for some \(g_i \in \mathbb{F}(t) \), \(i = 1, \ldots \ell \).
2. \(\mathcal{G}(x) \in \mathbb{F}(x) \iff \frac{\sigma_j(\mathcal{G})}{\sigma_j} = \frac{\sigma_j(g_j)}{g_j} \) for some \(g_j \in \mathbb{F}(x) \), \(j = 1, \ldots, m \).
3. \(\mathcal{Q}(y) \in \mathbb{F}(y) \iff \frac{\tau_k(\mathcal{Q})}{\tau_k} = \frac{\tau_k(g_k)}{g_k} \) for some \(g_k \in \mathbb{F}(y) \), \(k = 1, \ldots, n \).
Is h algebraic over $\mathbb{F}(t, x, y)$?

Prop. h is algebraic over $\mathbb{F}(t, x, y)$ iff $h^d \in \mathbb{F}(t, x, y)$ for some $d \in \mathbb{Z}$ with $d \neq 0$.

Corollary. Let h be an H-element of the form:

$$h = f(t, x) \alpha_1(t)^{x_1} \cdots \alpha_m(t)^{x_m} \mathcal{E}(t) \mathcal{G}(x),$$

where the α_j’s are monic. Let \mathbb{U} denote the set of roots of unity in \mathbb{F}. Then h is algebraic over $\mathbb{F}(t, x)$ iff

(i) $\alpha_1 = \cdots = \alpha_m = 1$,

(ii) $\frac{\delta_i(\mathcal{E})}{\mathcal{E}} = r_i \frac{\delta_i(\mathcal{G}(t))}{g_i(t)}$, where $r_i \in \mathbb{Q}, g_i \in \mathbb{F}(t), i = 1, \ldots, \ell$;

(iii) $\frac{\sigma_j(\mathcal{G})}{\mathcal{G}} = c_j \frac{\sigma_j(\mathcal{G}(x))}{g_j(x)}$, where $c_j \in \mathbb{U}, g_j \in \mathbb{F}(x), j = 1, \ldots, m$;
Example

Let h satisfy $\delta_1(h) = u_1 h$, $\delta_2(h) = u_2 h$ and $\sigma(h) = v h$, where

$$u_1 = \frac{3t_1 + 1}{2t_1(t_1 + 1)}, \quad u_2 = \frac{x - 2t_2}{3t_2(x + t_2)}, \quad v = -\frac{x + t_2}{x + t_2 + 1}$$

- By the structure theorem,

$$f = \frac{1}{x + t_2}, \quad \alpha = 1, \quad \beta_1 = \frac{3t_1 + 1}{2t_1(t_1 + 1)}, \quad \beta_2 = \frac{1}{3t_2}, \quad \lambda = -1.$$

- Christopher’s theorem

$$\beta_1 = \frac{\delta_1(t_1 + 1)}{t_1 + 1} + \frac{1}{2} \frac{\delta_1(t_1)}{t_1}, \quad \beta_2 = \frac{\delta_2(t_1 + 1)}{t_1 + 1} + \frac{1}{3} \frac{\delta_2(t_2)}{t_2}.$$

- Observe that $\lambda = -1$.

So h is algebraic over $\mathbb{F}(t_1, t_2, x)$.

h is of the form

$$h = c \frac{1}{x + t_2} \left((t_1 + 1)t_1^{\frac{1}{2}} t_2^{\frac{1}{3}} \right) (-1)^x.$$
Algebraic dependence (ongoing project)

Problem. Given H-elements h_1, \ldots, h_s over $\mathbb{F}(t, x, y)$, determine whether they are algebraically dependent over $\mathbb{F}(t, x, y)$.

For $i = 1, \ldots, s$, write

$$h_i = f_i \alpha_{i,1}^{x_1} \cdots \alpha_{i,m_i}^{x_m} \mathcal{E}_i(t) \mathcal{G}_i(x) \mathcal{Q}_i(y),$$

where $\alpha_{i,j} \in \mathbb{F}(t)$ is monic, $\mathcal{E}_i(t)$ hyperexp., $\mathcal{G}_i(x)$ hypergeom., and $\mathcal{Q}_i q$-hypergeom..

Prop. h_1, \ldots, h_s are a.d. over $\mathbb{F}(t, x, y)$ iff there exist $e_1, \ldots, e_s \in \mathbb{Z}$, not all zero, s.t.

(i)$$\alpha_{1,j}^{e_1} \cdots \alpha_{s,j}^{e_s} = 1 \quad \text{for } 1 \leq j \leq m;$$

(ii)$$\mathcal{E}_1^{e_1} \cdots \mathcal{E}_s^{e_s} \in \mathbb{F}(t), \quad \mathcal{G}_1^{e_1} \cdots \mathcal{G}_s^{e_s} \in \mathbb{F}(x), \quad \mathcal{Q}_1^{e_1} \cdots \mathcal{Q}_s^{e_s} \in \mathbb{F}(y).$$
Symbolic power functions

Problem. Given $\alpha_{i,j} \in \mathbb{F}(t)$ is monic, where $i = 1, \ldots, s$ and $j = 1, \ldots, m$, compute the \mathbb{Z}-submodule $M_{\alpha,j}$ of \mathbb{Z}^s s.t.

$$\alpha_{1,j}^{e_{1,j}} \cdots \alpha_{s,j}^{e_{s,j}} = 1$$

for all $(e_{1,j}, \ldots, e_{s,j}) \in \mathbb{Z}^s$.

A method

1. Determine $M_{\alpha,j}$ — computing polynomial gccls and solving linear systems over \mathbb{Z}.
2. $M_{\alpha} = M_{\alpha,1} \cap \cdots \cap M_{\alpha,m}$.
Example

Let
\[f_1 = \frac{1}{(t^2 - 1)(t^3 - 1)} \quad \text{and} \quad f_2 = \frac{(t - 1)^2}{(t + 1)^3(t^2 + t + 1)}. \]

Decide if \(f_1^x \) and \(f_2^x \) are a.d. over \(\mathbb{F}(t, x) \).

By gcd-computation
\[f_1 = \frac{1}{(t - 1)^2(t + 1)(t^2 + t + 1)} \quad \text{and} \quad f_2 = \frac{(t - 1)^2}{(t + 1)^3(t^2 + t + 1)}. \]

\(f_1^{e_1}f_2^{e_2} = 1 \) iff
\[
\begin{align*}
2e_1 - 2e_2 &= 0 \\
e_1 + 3e_2 &= 0 \\
e_1 + e_2 &= 0
\end{align*}
\]
iff \(e_1 = e_2 = 0 \).

Answer. \(f_1^x \) and \(f_2^x \) are a.i. over \(\mathbb{F}(t, x) \).
Hyperexponential case

Let $\delta = d/dz$

Lemma. Let $\mathcal{E}_1, \ldots, \mathcal{E}_s$ be hyperexponential over $\mathbb{F}(z)$, and

$$\frac{\delta(\mathcal{E}_i)}{\mathcal{E}_i} = \beta_i, \quad i = 1, \ldots, s.$$

Then

$$\exists e_1, \ldots, e_s \in \mathbb{Z}, \quad \prod_{i=1}^{s} \mathcal{E}_i^{e_i} \in \mathbb{F}(z)$$

is a logarithmic derivative of some element in $\mathbb{F}(z)$.

$$\sum_{i=1}^{s} e_i \beta_i$$
Example

Let

\[E_1 = \exp\left(\int \left(\frac{1}{z} - \frac{1}{z-1} + 4z \right) \, dz \right) \quad \text{and} \quad E_2 = \exp\left(\int \left(\frac{1}{z} - \frac{2z}{z^2 + 1} - 2z \right) \, dt \right). \]

 Decide if \(E_1 \) and \(E_2 \) are a.d. over \(\mathbb{F}(z) \).

By partial fraction decomposition,

\[\frac{\delta(E_1)}{E_1} = \left(\frac{1}{z} - \frac{1}{z-1} \right) + 4z \quad \text{and} \quad \frac{\delta(E_2)}{E_2} = \left(\frac{1}{z} - \frac{2z}{z^2 + 1} \right) - 2z. \]

\(E^{e_1}E^{e_2} \in \mathbb{F}(z) \) iff

\[e_1 \frac{\delta(E_1)}{E_1} + e_2 \frac{\delta(E_2)}{E_2} \]

is a logarithemic derivative

iff \(4e_1 - 2e_2 = 0 \).

Answer. \(E_1 \) and \(E_2 \) are a.d. over \(\mathbb{F}(z) \).
Hypergeometric case

Let \(\sigma(f(z)) = f(z + 1) \) for all \(f \in \mathbb{F}(z) \).

Lemma. Let \(G_1, \ldots, G_s \) be hypergeometric over \(\mathbb{F}(z) \), and

\[
\frac{\sigma(G_i)}{G_i} = \lambda_i, \quad i = 1, \ldots, s.
\]

Write \(\lambda_i = c_i \tilde{\lambda}_i \), where \(c_i \) is in \(\mathbb{F} \) and \(\tilde{\lambda}_i \) is monic. Then

\[
\exists e_1, \ldots, e_s \in \mathbb{Z}, \quad \prod_{i=1}^{s} G_i^{e_i} \in \mathbb{F}(z)
\]

\[
\iff \prod_{i=1}^{s} c_i^{e_i} = 1 \quad \text{and} \quad \sum_{i=1}^{s} e_s \frac{\delta(\lambda_i)}{\lambda_i} = \sigma \left(\frac{\delta(g)}{g} \right) - \frac{\delta(g)}{g}
\]

for some \(g \in \mathbb{F}(z) \).

Reference. M. Singer. *Deciding if solutions of \(\sigma(y_1) = f_1 y_1, \ldots, \sigma y_n = f_n y_n \) are algebraically dependent over \(\mathbb{C}(x) \).* A note on discussions at the 2nd NCSU-China Symb. Comput. Collaboration Workshop, Hangzhou, 2007.
Subproblems

1. Given \(c_1, \ldots, c_s \) in a finite algebraic extension over \(\mathbb{Q} \), find all vectors \((e_1, \ldots, e_s) \in \mathbb{Z}^s\) s.t.

\[
\prod_{i=1}^{s} c_i^{e_i} = 1.
\]

2. Given \(\lambda_1, \ldots, \lambda_s \in \mathbb{F}(z) \), find all vectors \((e_1, \ldots, e_s) \in \mathbb{Z}^s\) s.t.

\[
\sum_{i=1}^{s} e_i \frac{\delta(\lambda_i)}{\lambda_i} = \sigma \left(\frac{\delta(g)}{g} \right) - \frac{\delta(g)}{g}
\]

for some \(g \in \mathbb{F}(z) \).

Reference. Singer’s note
\(q\)-Hypergeometric case

Let \(\tau(f(z)) = f(qz)\) for all \(f \in \mathbb{F}(z)\), where \(q\) is not a root of unity.

Let \(Q_1, \ldots, Q_s\) be \(q\)-hypergeometric over \(\mathbb{F}(z)\), and

\[
\frac{\tau(Q_i)}{Q_i} = \mu_i, \quad i = 1, \ldots, s.
\]

Write \(\mu_i = c_i\tilde{\mu}_i\), where \(c_i\) is in \(\mathbb{F}\) and \(\tilde{\mu}_i\) is monic.

Lemma. Assume that there exist \(e_1, \ldots, e_s \in \mathbb{Z}\) s.t. \(\prod_{i=1}^{s} Q_i^{e_i} \in \mathbb{F}(z)\). Then

(i) there exists \(g \in \mathbb{F}(z)\) s.t.

\[
\sum_{i=1}^{s} e_i \frac{\delta(\mu_i)}{\mu_i} = \tau \left(\frac{\delta(g)}{g} \right) - \frac{\delta(g)}{g};
\]

(ii)

\[
\prod_{i=1}^{s} c_i^{e_i} = q^d,
\]

where \(d = \deg \text{num}(g) - \deg \text{den}(g)\).
Summary

\[h = \text{a rational function} \times \alpha_1(t)^{x_1} \cdots \alpha_m(t)^{x_m} \mathcal{E}(t) \mathcal{G}(x) \mathcal{Q}(y). \]

Future work

1. Implementation of algorithms for decomposing \(H \)-elements;
2. An algorithm for determining algebraic dependence of \(H \)-elements;
3. Criteria for the existence of telescopers.
4. ...