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Rigorous computing tools

o Why?
o Get the correct answer, not an "almost” correct one

o Bridge the gap between scientific computing and pure
mathematics - speed and reliability
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What kind of problems can we (CM) address 7

Currently we consider univariate functions f, “sufficiently smooth”
over [a, b].
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What kind of problems can we (CM) address 7

Currently we consider univariate functions f, “sufficiently smooth”
over [a, b].

Practical Examples:

e Computing supremum norms of approximation error functions:

sup {[f(z) —g(=)[},

z€|a, b]

where g is a very good approximation of f.

/ 4
7T:/ dx
1+ 22
0

@ Rigorous quadrature:
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Interval Arithmetic (IA)

@ Each interval = pair of floating-point numbers
( IA libraries exist, e.g. MPFI!)

http://gforge.inria.fr/projects/mpfi/
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Interval Arithmetic (IA)

Each interval = pair of floating-point numbers
( IA libraries exist, e.g. MPFI!)

o 7 € [3.1415, 3.1416]

Interval Arithmetic Operations

Eg. [1,2] +[-3,2] = [-2,4]
Range bounding for functions

Eg. € [-1,2], f(x) =22 -2 +1
F(X)=X?-X+1

F([ a]):[gl>ﬂ2*[*L2]+[L1]
F%{ ) ])::[0,4]—'L—1,2]%—[1,H
F([-1,2]) = [-1,6]

http://gforge.inria.fr/projects/mpfi/
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Interval Arithmetic (IA)

@ Each interval = pair of floating-point numbers
(multiple precision IA libraries exist, e.g. MPFI!)

o 7€ [3.1415,3.1416]

@ Interval Arithmetic Operations
Eg. [1,2] +[-3,2] = [-2,4]

@ Range bounding for functions
Eg. € [-1,2], f(x) =22 -2 +1
F(X)=X?-X+1

F(-1,2) = [-1,2> - [-1,2] + [1,1]
F([-1,2]) = [0,4] = [-1,2] + [1,1]
F([ 2]) = [-1,6]

€ [-1,2], f(z) € [~1,6], but In(f) = [3/4,3]

http://gforge.inria.fr/projects/mpfi/
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When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

]
f@) = el/eos@) ze0,1], p(z) =5, iz,
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|
el/ 3@z e[0,1], p(z) = 312, e,
f(z) = p(x)
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When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

fla) =e/=C), g e 0,1, p(x) =2 e,
e(z) = f(x) —p(x) st. |lello = suPyeq, 5{le(x)]} is as small as
possible (Remez algorithm)

4e-05

7 3e-05
p 2005
1e-05
€ ol
1e-05 |- 1
2005 |- J
3e-05 -
-2e.05
| | | |
o 02 04 0.6 08 1
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When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

|
f(:l?) = 61/COS(:L‘)’ T € [07 1]1 p($) = lego Cil'i,

e(z) = f(x) —p(z) s:t. [[ell = SUPgefq, 4 {le(2)} is as small as
possible (Remez algorithm)

4e-05 -
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When Interval Arithmetic does not suffice:
Computing supremum norms of approximation errors

|
f(:l?) = 61/COS(:L‘)’ T € [07 1]1 p($) = lego Cil'i,

e(z) = f(x) —p(z) s:t. [[ell = SUPgefq, 4 {le(2)} is as small as
possible (Remez algorithm)

4605 - -

Using IA, e(z) € [—233,298], but ||e(z)]|,, ~ 3.8325-107°
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Why IA does not suffice: Overestimation

Overestimation can be reduced by using intervals of smaller width.

) 02 0.4 0.6 0.8 1

In this case, over [0, 1] we need 107 intervals!
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Rigorous polynomial approximations

-0.002

-0.003

-0.004
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Rigorous polynomial approximations

f replaced with a rigorous polynomial approximation
- polynomial approximation T' of degree n
-interval A's. t. f(z) —T(x) € A,Vzx € [a,b]

0.003

0.002

0.001

o

-0.001

-0.002

-0.003

-0.004

-

Main point of this talk: How to compute (T, A) ?

(T,A)
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Idea: Consider Taylor approximations
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Taylor Models - How do we obtain them?

Idea: Consider Taylor approximations
Let n € N, n+ 1 times differentiable function f over [a, b] around
Zg-

. = [ (@o) (@ — @)’ .
fla) = ZO + An(@,€)

il

— remainder
T(z)
(n+1) _ o\t
o Ay(x,&) = f ((i)(fl)l%) , T € [a,b], £ lies strictly

between z and xg
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Taylor Models - How do we obtain them?

Idea: Consider Taylor approximations
Let n € N, n+ 1 times differentiable function f over [a, b] around
Zg-

. = [ (@o) (@ — @)’ .
fla) = ZO + An(@,€)

il

remainder
T(z)
(n+1) _ . \ntl
o Ay(x,&) = f ((i)(fl)l%) , T € [a,b], £ lies strictly

between z and xg

F9 (o)
i!
@ How to compute an interval enclosure A for A, (z,£) ?

@ How to compute the coefficients of T'(z) ?

9 /29



Automatic Differentiation - Point intervals

Compute f() () - f represented as an expression tree
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Automatic Differentiation - Larger intervals

Compute f)([a,b]) - f represented as an expression tree
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Automatic Differentiation - Larger intervals

Compute f)([a,b]) - f represented as an expression tree

- Simple formulas for derivatives of f‘basic functions™ exp, sin, etc.
- Leibnitz formula: f@([a,d]) = S0 _o ur vik

- For composite functions, recursively apply operations (addition,
multiplication, composition)

SENER

Given f(x) = sin(z) cos(z), compute f*([0,1])

sin(z) — U = [[0,0.85], [0.54, 1], [—0.85, 0], [~ 1, —0.54], [0, 0.85]]
cos(z) — U = [[0.54,1],[—0.85,0], [-1, —0.55], [0, 0.85], [0.54, 1]]

f(z) = [upvo, uov1 + ug v, ..., [0,13.5] But fF®([0,1]) = [0, 8]
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What happens when f is a composite function?

The interval bound A for A, (z,&) can be largely overestimated.
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What happens when f is a composite function?

The interval bound A for A, (z,&) can be largely overestimated.

f(z) = e/ 5% over [0,1], n = 13, 29 = 0.5.
f(z) —T(x) €[0,4.56 - 1073]

e Automatic differentiation and Lagrange formula:
A =[-1.93-10% 1.35-10%]

o Cauchy's Estimate
A =[-917-1072,9.17-1072

e Taylor Models
A =[-9.04-1073,9.06 - 1077]

25. Chevillard, J.Harrison, M. Joldes, Ch. Lauter, Efficient and accurate computation of upper
bounds of approximation errors, 2010, RRLIP2010-2
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Taylor Models Philosophy

For bounding the remainders:

@ For “basic functions” use Lagrange formula.

@ For “composite functions’use a two-step procedure:
- compute models (7', I) for all basic functions;
- apply algebraic rules with these models, instead of operations
with the corresponding functions.
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Taylor Models Issues

f(z) = arctan(z) over [—0.9,0.9]

p(z) - minimax, degree 15
e(z) = p(z) — f(z)

1.5e-08

lelly, =~ 1078

-08 -0.6

-0.4 -0.2

0.2

0.4 0.6

0.8
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Taylor Models Issues

f(z) = arctan(x) over [—0.9,0.9]
p(z) - minimax, degree 15
e(x) = p(x) — f(z)
lell o ~ 107"
In this case Taylor approximations are not good, we need
theoretically a TM of degree 120.

Practically, the computed interval remainder can not be made
sufficiently small due to overestimation

Consequence: Remainder bounds are unsatisfactory in our case.
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Our Approach - Chebyshev Models

- Use a polynomial approximation better than Taylor:

o Chebyshev interpolation polynomial3.

@ Chebyshev truncated series.

- Use the two step approach as Taylor Models:
@ compute models (P, I) for basic functions;

@ apply algebraic rules with these models, instead of operations
with the corresponding functions.

3N. Brisebarre, M. Joldes, Chebyshev interpolation polynomial-based tools for rigorous computing.
In Proceedings of the 2010 international Symposium on Symbolic and Algebraic Computation (Munich,
Germany, July 25 - 28, 2010). ACM, New York, NY, 147-154
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Quick Reminder: Chebyshev Polynomials

Over [—1,1], T,,(z) = cos (narccosx),n > 0.

T4

“Chebyshev nodes”: n distinct real roots in [—1, 1] of T},:

xizcos(W),i:O,...,n—l.
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Chebyshev Models: using interpolation polynomial

P(x) = ZP@ T;(x) interpolates f at xx € [—1,1], Chebyshev nodes
of order n + 1.
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Chebyshev Models: using interpolation polynomial

P(z) = sz T;(x) interpolates f at zj € [—1, 1], Chebyshev nodes
of order n —|— 1.

Computation of the coefficients

pi= > %Hf(:nk)Tz(xk) i=0,...,n
k=0

Remark: Currently, this step is more costly than in the case of
TMs. We can use truncated Chebyshev series instead.

|
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Chebyshev Models: using interpolation polynomial

n

P(z) = > piTi(x) interpolates f at xj € [—1, 1], Chebyshev nodes
i=0

of order n + 1.

Computation of the coefficients

Interpolation Error: Lagrange remainder

Ve € [-1,1], 3¢ € [-1,1] s.t.

(n+1)
@)~ P@) = L I o0 ).
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Chebyshev Models: using interpolation polynomial

(x) = sz T;(x) interpolates f at zj € [—1, 1], Chebyshev nodes
of order n —|— 1.

Computation of the coefficients (for “basic” functions)

Interpolation Error: Lagrange remainder (for “basic” functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

- Note: Chebfun - "Computing Numerically with Functions Instead of
Numbers® (N. Trefethen et al.): Chebyshev interpolation
polynomials are already used, but the approach is not rigorous
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Chebyshev Models: using truncated Chebyshev series

1
P(z) = kio’aka(a:), where ay = i/ f(x>Tk(x)dx.
B -1
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Chebyshev Models: using truncated Chebyshev series

P(z) = kéo’aka(x), where aj = i/wdx

Computation of the coefficients (for “basic” D-finite functions)

- recurrence formulae for computing ay
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Chebyshev Models: using truncated Chebyshev series

P(z) = kéo’aka(x), where aj = i/wdx

Computation of the coefficients (for “basic” D-finite functions)

- recurrence formulae for computing a; Remark: As fast as TMs.
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Chebyshev Models: using truncated Chebyshev series

P(z) = kiolaka(x)’ where aj = i/ir\(/?i?g)dx

Computation of the coefficients (for “basic” D-finite functions)

Truncation Error: Bernstein-like formula (for “basic” D-finite
functions)

FIE©)

Vo€ [-1,1], 3 € [FL1] st f(@) = P@) = g b
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Chebyshev Models: using truncated Chebyshev series

P(z) = kéo’aka(:r), where ay = i/wdx

Computation of the coefficients (for “basic” D-finite functions)

Truncation Error: Bernstein-like formula (for “basic” D-finite
functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

17 / 29



Chebyshev Models - Operations: Addition

Given two Chebyshev Models for f1 and fa, over [a,b], degree n:
fi(z) = Pi(z) € Ay and fo(z) — Pa(x) € Ag, Va € [a, b].

Addition
(Pl, Al) + (Pz, AQ) = (Pl + Py, A1 + Ag).
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Chebyshev Models - Operations: Multiplication
Given two Chebyshev Models for f1 and fs, over [a,b], degree n:
fi(z) = Pi(z) € Ay and fo(z) — Pa(x) € Ag, Va € [a, B].

Multiplication
We need algebraic rule for: (P, Aq) - (P, Ag) = (P, A) s.t.
fi(x) - fao(x) = P(x) € A, Va € [a, 0]
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Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and fs, over [a,b], degree n:
fi(z) = Pi(z) € Ay and fo(z) — Pa(x) € Ag, Va € [a, B].

Multiplication
We need algebraic rule for: (P, Aq) - (P, Ag) = (P, A) s.t.
fi(x) - fao(x) = P(x) € A, Va € [a, 0]

fl(aj)'fg(a?)GPl-P2+P2'A1+P1~A2+A1~A2.
I
2

(P1-P2)o.m+ (Pr-Po)nyi on

P I

A=1I+1,
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Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and fs, over [a,b], degree n:
fi(z) = Pi(z) € Ay and fo(z) — Pa(x) € Ag, Va € [a, B].

Multiplication
We need algebraic rule for: (P, Aq) - (P, Ag) = (P, A) s.t.
fi(x) - fa(x) — P(x) € A, Vz € [a, b]
fl(as)fg(a:) EP-Po+Py- A1+ Py -As+ Ay - Ay
I
2

(P1-P2)o.m+ (Pr-Po)nyi on
P I

A=1+ I,

n

In our case, for bounding “Ps™ P =po+ > p;-[—1,1].

=1
19 / 29



Chebyshev Models - Operations: Composition

Given CMs for f; over [c,d], for fa over [a,b], degree n:
fily) = Pi(y) € A1, Vy € [¢,d] and fa(x) — Po(x) € Ag, Vz € [a,b].
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Given CMs for f; over [c,d], for fa over [a,b], degree n:
fily) = Pi(y) € A1, Vy € [¢,d] and fa(x) — Po(x) € Ag, Vz € [a,b].

Remark: (f1 o f2)(x) is fi evaluated at y = fa(x).
We need: fa([a,b]) C [c,d], checked by Py + Ay C [c,d]
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Chebyshev Models - Operations: Composition

Given CMs for f; over [c,d], for fa over [a,b], degree n:
fily) = Pi(y) € A1, Vy € [¢,d] and fa(x) — Po(x) € Ag, Vz € [a,b].

Remark: (f1 o f2)(x) is fi evaluated at y = fa(x).
We need: fa([a,b]) C [c,d], checked by Py + Ay C [c,d]

fi(y) € Pi(y) + Aq
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Chebyshev Models - Operations: Composition

Given CMs for f; over [c,d], for fa over [a,b], degree n:

fily) = Pi(y) € A1, Vy € [¢,d] and fa(x) — Po(x) € Ag, Vz € [a,b].

Remark: (f1 o f2)(x) is fi evaluated at y = fa(x).
We need: fa([a,b]) C [c,d], checked by Py + Ay C [c,d]

fi(fa()) € Pa(fa(z)) + Ay
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Chebyshev Models - Operations: Composition

Given CMs for f; over [c,d], for fa over [a,b], degree n:
fily) = Pi(y) € A1, Vy € [¢,d] and fa(x) — Po(x) € Ag, Vz € [a,b].

Remark: (f1 o f2)(x) is fi evaluated at y = fa(x).
We need: fa([a,b]) C [c,d], checked by Py + Ay C [c,d]

fi(f2(2)) € Pi(Pe(x) + Az) + Ay

Extract polynomial and remainder: P; can be evaluated using only
additions and multiplications: Clenshaw’s algorithm
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Chebyshev Models - Supremum norm example

f(z) = arctan(x) over [—0.9,0.9]
p(z) - minimax, degree 15

e(z) = p(z) — f(x)

1.5e-08

1le-08

5e-09

-5e-09

-le-08

-1.5e-08
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Chebyshev Models - Supremum norm example

f(z) = arctan(x) over [—0.9,0.9]
p(z) - minimax, degree 15

e(z) = p(x) - f(z)

el =~ 1078
In this case Taylor approximations are not good, we need
theoretically a TM of degree 120.
Practically, the computed interval remainder can not be made
sufficiently small due to overestimation.
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Chebyshev Models - Supremum norm example

f(z) = arctan(x) over [—0.9,0.9]
p(z) - minimax, degree 15
e(x) = p(z) — f(z)
lell o =~ 1075
In this case Taylor approximations are not good, we need
theoretically a TM of degree 120.
Practically, the computed interval remainder can not be made
sufficiently small due to overestimation.

A CM of degree 60 works.
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Chebyshev Models - Supremum norm example

Example: e(z) = f(z) — p(x)
f(z) = e/ over [0,1], p(x) - minimax, degree 10

le(@)l o = 3.8325 - 1077 secs ]l

-2e-05

-3e-05

-4e-05
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Chebyshev Models - Supremum norm example

Example: e(z) = f(z) — p(x)
f(x) = e/ s over [0,1], p(x) - minimax, degree 10

le(@)l o = 3.8325 - 1077 secs ]l
Need: TM of degree 30. 7

-1e-05 -

-2e-05

-3e-05

-4e-05
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Chebyshev Models - Supremum norm example

Example: e(z) = f(z) — p(x)
f(x) = e/ s over [0,1], p(x) - minimax, degree 10

le(@)l o = 3.8325 - 1077 secs ]l
Need: TM of degree 30. 7
CM of degree 13.

-1e-05 -

-2e-05

-3e-05

-4e-05
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CMs vs. TMs

Comparison between remainder bounds for several functions:

f(z), I, n CM Exact bound ™ Exact bound
sin(z), [3, 4], 10 1.19-10 % | 1.13-10 1% [ 1.22.10" T | 1.16-10" 1T
arctan(x), [—0.25, 0.25], 15 | 7.89- 10 ° 7.95-10- 17 | 2.58.10-10 | 3.24.10 12
arctan(z), [—0.9, 0.9], 15 5.10 - 10 ° 1.76 - 10~ ° 1.67 - 102 5.70 - 10~ 2
exp(1/ cos(z)), [0, 1], 14 5.22 .10 " 4.95.10 7 9.06 - 10~ ° 2.59 - 10~ 2
% [0, 1], 15 9.11-10~9 2.21-10~° 1.18- 103 3.38 .10~ °
sin(exp(z)),[-1, 1], 10 9.47 - 10" 3.72.10° 2.96 - 102 1.55-10°
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CMs vs. TMs

Operations complexity:

Addition (O(n)), Multiplication(O(n?)) and Composition
(O(n?)) have similar complexity.

Initial computation of coefficients for all “basic” D-finite
functions is similar (O(n)).

Comparison between remainder bounds for several functions:

f(z), I, n CM Exact bound ™ Exact bound
sin(z), [3, 4], 10 1.19-10 % | 1.13-10 1% [ 1.22.10" T | 1.16-10" 1T
arctan(x), [—0.25, 0.25], 15 | 7.89- 10 ° 7.95-10- 17 | 2.58.10-10 | 3.24.10 12
arctan(z), [—0.9, 0.9], 15 5.10 - 10 ° 1.76 - 10~ ° 1.67 - 102 5.70 - 10~ 2
exp(1/ cos(z)), [0, 1], 14 5.22 .10 " 4.95.10 7 9.06 - 10~ ° 2.59 - 10~ 2
% [0, 1], 15 9.11-10~9 2.21-10~° 1.18- 103 3.38 .10~ °
sin(exp(z)),[-1, 1], 10 9.47 - 10" 3.72.10° 2.96 - 102 1.55-10°
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What about other polynomial approximations?

@ Remez (minimax):
X More costly to obtain (more complex numerical algorithm);

X Existent close formula for remainder has the same quality as
the one we use.
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Quality of approximation compared to minimax

Remark: It is known [Ehlich & Zeller, 1966] that Chebyshev
interpolants are "near-best":

lelloo < (2 + (2/7)log(n)) [|Eminimax|| oo
An

o A5 = 3.72... — we lose at most 2 bits
@ A3y = 4.16... — we lose at most 3 bits
@ Ajgp = 4.93... — we lose at most 3 bits

@ Aqgoooo = 9.32... — we lose at most 4 bits
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Quality of approximation compared to minimax

No f(z), I, n CM Exact bound Minimax

1 sin(z), [3, 4], 10 1.19-10 % [ 1.13-10 1% | 1.12- 10" 1%
2 arctan(z), [—0.25, 0.25], 15 | 7.89-10 > | 7.95.10" 17 | 4.03-10 17
3 arctan(z), [-0.9, 0.9], 15 5.10 - 10— ° 1.76 - 10— 1.01- 10

4 exp(1/ cos(x)), [0, 1], 14 5.22.10 " 4.95-10 7 3.57 - 107
5 % [0, 1], 15 9.11-107 2.21-10"9 1.72-107°9
6 sin(exp(z)),[~1, 1], 10 9.47 .10~ ° 3.72.10~ 0 1.78-10~°
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Rigorous quadrature

L4
7T:f72d113
o 1+=x

4

e Compute a TM/CM (P, I) for f(x) = 22
x
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Rigorous quadrature

1y

Wzofl—i—nﬂdm

o Compute a TM/CM (P, I) for f(z) = —
ompute a s or X —1+$2

P(z)+I< f(z) < P(x)+ 1
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Rigorous quadrature

1 4

W:Ofl%—x?dx

o Compute a TM/CM (P, I) for f(z) = —
ompute a s or X —1+x2

b b b
[(P(@) + Ddz < [ f(z)dz < [(P(x) + T)da
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Rigorous quadrature

L4l
r=f——ds
o 1+
Order Subdiv. Bound TM? Bound CM
5 1 [ 3.0231893333333, 8.5807786666666 ] [3.0986941190195, 3.1859962140742]
4 [ 3.1415363229415, 3.1416629536292 ] [3.1415907717769, 3.1415943610772]
16 3.1415926101614, 3.1415926980786 [3.1415926531269, 3.1415926539131]
10 1 -2.1984010266006, 3.2113963175267 [3.1411981994969, 3.1419909934525]
4 3.1415926519535, 3.1415926546870 [3.1415926535805, 3.1415926535990]
16 3.1415926535897, 3.1415926535897 [3.1415926535897932, 3.1415926535897932]

*Results taken from M. Berz, K. Makino, “New Methods for

High-Dimensional Verified Quadrature”, Reliable Computing 5:13-22, 1999
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Conclusion

e CMs are potentially useful in various rigorous computing
applications: smaller remainders than TMs, similar computing
times.

@ Current implementation: in Maple
www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/.

@ Work in progress: use Chebyshev truncated series instead of
Chebyshev interpolation polynomials.

o Future work: extend to multivariate functions
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