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Rigorous computing tools

Why?

Get the correct answer, not an �almost� correct one
Bridge the gap between scienti�c computing and pure
mathematics - speed and reliability

How?

Use Floating-Point as support for computations (fast)
Bound roundo�, discretization, truncation errors in numerical
algorithms
Compute enclosures instead of approximations

What?

1. Interval arithmetic (IA)
2. Taylor models (TM)

3. Chebyshev models (CM)

Where? Beam Physics (M. Berz, K. Makino), Lorentz
attractor (W. Tucker), Flyspeck project (R. Zumkeller)

2 / 29



Rigorous computing tools

Why?

Get the correct answer, not an �almost� correct one
Bridge the gap between scienti�c computing and pure
mathematics - speed and reliability

How?

Use Floating-Point as support for computations (fast)
Bound roundo�, discretization, truncation errors in numerical
algorithms
Compute enclosures instead of approximations

What?

1. Interval arithmetic (IA)
2. Taylor models (TM)

3. Chebyshev models (CM)

Where? Beam Physics (M. Berz, K. Makino), Lorentz
attractor (W. Tucker), Flyspeck project (R. Zumkeller)

2 / 29



Rigorous computing tools

Why?

Get the correct answer, not an �almost� correct one
Bridge the gap between scienti�c computing and pure
mathematics - speed and reliability

How?

Use Floating-Point as support for computations (fast)
Bound roundo�, discretization, truncation errors in numerical
algorithms
Compute enclosures instead of approximations

What?

1. Interval arithmetic (IA)
2. Taylor models (TM)

3. Chebyshev models (CM)

Where? Beam Physics (M. Berz, K. Makino), Lorentz
attractor (W. Tucker), Flyspeck project (R. Zumkeller)

2 / 29



Rigorous computing tools

Why?

Get the correct answer, not an �almost� correct one
Bridge the gap between scienti�c computing and pure
mathematics - speed and reliability

How?

Use Floating-Point as support for computations (fast)
Bound roundo�, discretization, truncation errors in numerical
algorithms
Compute enclosures instead of approximations

What?

1. Interval arithmetic (IA)
2. Taylor models (TM)
3. Chebyshev models (CM)

Where? Beam Physics (M. Berz, K. Makino), Lorentz
attractor (W. Tucker), Flyspeck project (R. Zumkeller)

2 / 29



What kind of problems can we (CM) address ?

Currently we consider univariate functions f , �su�ciently smooth�
over [a, b].

Practical Examples:

Computing supremum norms of approximation error functions:

sup
x∈[a, b]

{|f(x)− g(x)|},

where g is a very good approximation of f .

Rigorous quadrature:

π =

1∫
0

4
1 + x2

dx
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Interval Arithmetic (IA)

Each interval = pair of �oating-point numbers
(multiple precision IA libraries exist, e.g. MPFI1)

π ∈ [3.1415, 3.1416]
Interval Arithmetic Operations
Eg. [1, 2] + [−3, 2] = [−2, 4]
Range bounding for functions
Eg. x ∈ [−1, 2], f(x) = x2 − x+ 1
F (X) = X2 −X + 1
F ([−1, 2]) = [−1, 2]2 − [−1, 2] + [1, 1]
F ([−1, 2]) = [0, 4]− [−1, 2] + [1, 1]
F ([−1, 2]) = [−1, 6]

x ∈ [−1, 2], f(x) ∈ [−1, 6], but Im(f) = [3/4, 3]

1http://gforge.inria.fr/projects/mpfi/
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When Interval Arithmetic does not su�ce:
Computing supremum norms of approximation errors

f(x) = e1/ cos(x), x ∈ [0, 1], p(x) =
∑10

i=0 cix
i,

ε(x) = f(x)− p(x) s.t. ‖ε‖∞ = supx∈[a, b]{|ε(x)|} is as small as
possible (Remez algorithm)
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Why IA does not su�ce: Overestimation

Overestimation can be reduced by using intervals of smaller width.

In this case, over [0, 1] we need 107 intervals!
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Rigorous polynomial approximations

f replaced with

a rigorous polynomial approximation : (T,∆)

- polynomial approximation T of degree n

- interval ∆ s. t. f(x)− T (x) ∈∆,∀x ∈ [a, b]

Main point of this talk: How to compute (T,∆) ?
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Taylor Models

- How do we obtain them?

Idea: Consider Taylor approximations

Let n ∈ N, n+ 1 times di�erentiable function f over [a, b] around
x0.

f(x) =
n∑
i=0

f (i)(x0)(x− x0)i

i!︸ ︷︷ ︸
T (x)

+ ∆n(x, ξ)︸ ︷︷ ︸
remainder

∆n(x, ξ) =
f (n+1)(ξ)(x− x0)n+1

(n+ 1)!
, x ∈ [a, b], ξ lies strictly

between x and x0

How to compute the coe�cients
f (i)(x0)

i!
of T (x) ?

How to compute an interval enclosure ∆ for ∆n(x, ξ) ?
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Automatic Di�erentiation - Point intervals

Compute f (i)(x0) - f represented as an expression tree

- Simple formulas for derivatives of �basic functions�: exp, sin, etc.
- Leibnitz formula: f (i)(x0) =

∑i
k=0 uk vi−k

- For composite functions, recursively apply operations (addition,
multiplication, composition)

Example:

Given f(x) = sin(x) cos(x), compute f (4)(0)

sin(x)→ u = [sin(0), cos(0),− sin(0),− cos(0), sin(0)]

cos(x)→ v = [cos(0),− sin(0),− cos(0), sin(0), cos(0)]

f(x)→ [u0 v0, u0 v1+u1 v0, . . . , u0 v4+u1 v3+u2 v2+u3 v1+u4 v0]
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Automatic Di�erentiation - Larger intervals

Compute f (i)([a, b]) - f represented as an expression tree
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f(x)→ [u0 v0, u0 v1 + u1 v0, . . . , [0, 13.5]] But f (4)([0, 1]) = [0, 8]
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What happens when f is a composite function?

The interval bound ∆ for ∆n(x, ξ) can be largely overestimated.

Example 2:

f(x) = e1/ cosx, over [0, 1], n = 13, x0 = 0.5.
f(x)− T (x) ∈ [0, 4.56 · 10−3]

Automatic di�erentiation and Lagrange formula:
∆ = [−1.93 · 102, 1.35 · 103]
Cauchy's Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]
Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

2
S. Chevillard, J.Harrison, M. Joldes, Ch. Lauter, E�cient and accurate computation of upper

bounds of approximation errors, 2010, RRLIP2010-2
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Cauchy's Estimate
∆ = [−9.17 · 10−2, 9.17 · 10−2]
Taylor Models
∆ = [−9.04 · 10−3, 9.06 · 10−3]

2
S. Chevillard, J.Harrison, M. Joldes, Ch. Lauter, E�cient and accurate computation of upper

bounds of approximation errors, 2010, RRLIP2010-2
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Taylor Models Philosophy

For bounding the remainders:

For �basic functions� use Lagrange formula.

For �composite functions�use a two-step procedure:
- compute models (T, I) for all basic functions;
- apply algebraic rules with these models, instead of operations
with the corresponding functions.

12 / 29



Taylor Models Issues

Example:

f(x) = arctan(x) over [−0.9, 0.9]
p(x) - minimax, degree 15
ε(x) = p(x)− f(x)

‖ε‖∞ ' 10−8
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‖ε‖∞ ' 10−8

In this case Taylor approximations are not good, we need
theoretically a TM of degree 120.

Practically, the computed interval remainder can not be made
su�ciently small due to overestimation

Consequence: Remainder bounds are unsatisfactory in our case.
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Our Approach - Chebyshev Models

Basic idea:

- Use a polynomial approximation better than Taylor:

Chebyshev interpolation polynomial3.

Chebyshev truncated series.

- Use the two step approach as Taylor Models:

compute models (P, I) for basic functions;

apply algebraic rules with these models, instead of operations
with the corresponding functions.

3
N. Brisebarre, M. Joldes, Chebyshev interpolation polynomial-based tools for rigorous computing.

In Proceedings of the 2010 international Symposium on Symbolic and Algebraic Computation (Munich,
Germany, July 25 - 28, 2010). ACM, New York, NY, 147-154
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Quick Reminder: Chebyshev Polynomials

Over [−1, 1], Tn(x) = cos (n arccosx) , n ≥ 0.

�Chebyshev nodes�: n distinct real roots in [−1, 1] of Tn:
xi = cos

(
(i+1/2)π

n

)
, i = 0, . . . , n− 1.
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Chebyshev Models: using interpolation polynomial

P (x) =
n∑
i=0

piTi(x) interpolates f at xk ∈ [−1, 1], Chebyshev nodes

of order n+ 1.

Computation of the coe�cients

Interpolation Error: Lagrange remainder

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models

- Note: Chebfun - �Computing Numerically with Functions Instead of
Numbers� (N. Trefethen et al.): Chebyshev interpolation
polynomials are already used, but the approach is not rigorous
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Chebyshev Models: using truncated Chebyshev series

P (x) =
n∑
k=0

′akTk(x), where ak =
2
π

1∫
−1

f(x)Tk(x)√
1− x2

dx.

Computation of the coe�cients (for �basic� D-�nite functions)

Truncation Error: Bernstein-like formula (for �basic� D-�nite
functions)

- For composite functions,use algebraic rules (addition, multiplication,
composition) with models
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Chebyshev Models - Operations: Addition

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Addition
(P1,∆1) + (P2,∆2) = (P1 + P2,∆1 + ∆2).
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Chebyshev Models - Operations: Multiplication

Given two Chebyshev Models for f1 and f2, over [a, b], degree n:
f1(x)− P1(x) ∈∆1 and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Multiplication
We need algebraic rule for: (P1,∆1) · (P2,∆2) = (P,∆) s.t.
f1(x) · f2(x)− P (x) ∈∆, ∀x ∈ [a, b]

f1(x) · f2(x) ∈ P1 · P2︸ ︷︷ ︸+ P2 ·∆1 + P1 ·∆2 + ∆1 ·∆2︸ ︷︷ ︸
I2

.

(P1 · P2)0...n︸ ︷︷ ︸
P

+ (P1 · P2)n+1...2n︸ ︷︷ ︸
I1

∆ = I1 + I2

In our case, for bounding �P s�: P = p0 +
n∑
i=1

pi · [−1, 1].
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Chebyshev Models - Operations: Composition

Given CMs for f1 over [c, d], for f2 over [a, b], degree n:
f1(y)− P1(y) ∈∆1, ∀y ∈ [c, d] and f2(x)− P2(x) ∈∆2, ∀x ∈ [a, b].

Remark: (f1 ◦ f2)(x) is f1 evaluated at y = f2(x).
We need: f2([a, b]) ⊆ [c, d], checked by P2 + ∆2 ⊆ [c, d]

f1() ∈ P1() + ∆1

Extract polynomial and remainder: P1 can be evaluated using only
additions and multiplications: Clenshaw's algorithm
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Chebyshev Models - Supremum norm example

Example:

f(x) = arctan(x) over [−0.9, 0.9]
p(x) - minimax, degree 15
ε(x) = p(x)− f(x)

‖ε‖∞ ' 10−8
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In this case Taylor approximations are not good, we need
theoretically a TM of degree 120.
Practically, the computed interval remainder can not be made
su�ciently small due to overestimation.

A CM of degree 60 works.
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Chebyshev Models - Supremum norm example

Example: ε(x) = f(x)− p(x)

f(x) = e1/ cosx, over [0, 1], p(x) - minimax, degree 10

‖ε(x)‖∞ ' 3.8325 · 10−5

Need: TM of degree 30.
CM of degree 13.
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CMs vs. TMs

Operations complexity:

X Addition (O(n)), Multiplication(O(n2)) and Composition
(O(n3)) have similar complexity.

X Initial computation of coe�cients for all �basic� D-�nite
functions is similar (O(n)).

Comparison between remainder bounds for several functions:
f(x), I, n CM Exact bound TM Exact bound

sin(x), [3, 4], 10 1.19 · 10−14 1.13 · 10−14 1.22 · 10−11 1.16 · 10−11

arctan(x), [−0.25, 0.25], 15 7.89 · 10−15 7.95 · 10−17 2.58 · 10−10 3.24 · 10−12

arctan(x), [−0.9, 0.9], 15 5.10 · 10−3 1.76 · 10−8 1.67 · 102 5.70 · 10−3

exp(1/ cos(x)), [0, 1], 14 5.22 · 10−7 4.95 · 10−7 9.06 · 10−3 2.59 · 10−3

exp(x)
log(2+x) cos(x) , [0, 1], 15 9.11 · 10−9 2.21 · 10−9 1.18 · 10−3 3.38 · 10−5

sin(exp(x)),[−1, 1], 10 9.47 · 10−5 3.72 · 10−6 2.96 · 10−2 1.55 · 10−3
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What about other polynomial approximations?

Remez (minimax):

X More costly to obtain (more complex numerical algorithm);

X Existent close formula for remainder has the same quality as
the one we use.
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Quality of approximation compared to minimax

Remark: It is known [Ehlich & Zeller, 1966] that Chebyshev
interpolants are "near-best":

‖ε‖∞ ≤ (2 + (2/π) log(n)︸ ︷︷ ︸
Λn

) ‖εminimax‖∞

Λ15 = 3.72...→ we lose at most 2 bits

Λ30 = 4.16...→ we lose at most 3 bits

Λ100 = 4.93...→ we lose at most 3 bits

Λ100000 = 9.32...→ we lose at most 4 bits
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Quality of approximation compared to minimax

No f(x), I, n CM Exact bound Minimax

1 sin(x), [3, 4], 10 1.19 · 10−14 1.13 · 10−14 1.12 · 10−14

2 arctan(x), [−0.25, 0.25], 15 7.89 · 10−15 7.95 · 10−17 4.03 · 10−17

3 arctan(x), [−0.9, 0.9], 15 5.10 · 10−3 1.76 · 10−8 1.01 · 10−8

4 exp(1/ cos(x)), [0, 1], 14 5.22 · 10−7 4.95 · 10−7 3.57 · 10−7

5
exp(x)

log(2+x) cos(x) , [0, 1], 15 9.11 · 10−9 2.21 · 10−9 1.72 · 10−9

6 sin(exp(x)),[−1, 1], 10 9.47 · 10−5 3.72 · 10−6 1.78 · 10−6
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Rigorous quadrature

Example:

π =
1∫
0

4
1 + x2

dx

Compute a TM/CM (P, I) for f(x) =
4

1 + x2
.
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Rigorous quadrature

Example:

π =
1∫
0

4
1 + x2

dx

Order Subdiv. Bound TM4 Bound CM

5 1 [ 3.0231893333333, 8.5807786666666 ] [3.0986941190195, 3.1859962140742]
4 [ 3.1415363229415, 3.1416629536292 ] [3.1415907717769, 3.1415943610772]
16 [ 3.1415926101614, 3.1415926980786 ] [3.1415926531269, 3.1415926539131]

10 1 [-2.1984010266006, 3.2113963175267 ] [3.1411981994969, 3.1419909934525]
4 [ 3.1415926519535, 3.1415926546870 ] [3.1415926535805, 3.1415926535990]
16 [ 3.1415926535897, 3.1415926535897 ] [3.1415926535897932, 3.1415926535897932]

4Results taken from M. Berz, K. Makino, �New Methods for

High-Dimensional Veri�ed Quadrature�, Reliable Computing 5:13-22, 1999
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Conclusion

CMs are potentially useful in various rigorous computing
applications: smaller remainders than TMs, similar computing
times.

Current implementation: in Maple
www.ens-lyon.fr/LIP/Arenaire/Ware/ChebModels/.

Work in progress: use Chebyshev truncated series instead of
Chebyshev interpolation polynomials.

Future work: extend to multivariate functions
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