Some wonderful conjectures (but almost no theorems) at the boundary between

 analysis, combinatorics and probability:The entire function $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$,
the polynomials $P_{N}(x, w)=\sum_{n=0}^{N}\binom{N}{n} x^{n} w^{n(N-n)}$,
and the generating polynomials of connected graphs

Alan Sokal
 New York University / University College London
 in collaboration with

> Alex Eremenko (Purdue) Alex Scott (Oxford)

Talk at INRIA, 30 November 2009

The entire function $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$

- Defined for complex x and y satisfying $|y| \leq 1$
- Analytic in $\mathbb{C} \times \mathbb{D}$, continuous in $\mathbb{C} \times \overline{\mathbb{D}}$
- $F(\cdot, y)$ is entire for each $y \in \overline{\mathbb{D}}$
- Valiron (1938): "from a certain viewpoint the simplest entire function after the exponential function"

Applications:

- Statistical mechanics: Partition function of one-site lattice gas
- Combinatorics: Generating function for Tutte polynomials on K_{n} (also acyclic digraphs, inversions of trees, ...)
- Functional-differential equation: $F^{\prime}(x)=F(y x)$ where ${ }^{\prime}=\partial / \partial x$
- Complex analysis: Whittaker and Goncharov constants

Application to Tutte polynomials of complete graphs

- Finite graph $G=(V, E)$
- Multivariate Tutte polynomial $Z_{G}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}$
where $k(A)=\#$ connected components in (V, A)
- Connected-spanning-subgraph polynomial $C_{G}(\mathbf{v})=\lim _{q \rightarrow 0} q^{-1} Z_{G}(q, \mathbf{v})$
- Write $Z_{G}(q, v)$ and $C_{G}(v)$ if $v_{e}=v$ for all edges e [standard Tutte polynomial is $Z_{G}(q, v)$ in different variables]

Specialization to complete graphs K_{n} :

$$
\begin{aligned}
Z_{n}(q, v) & =\sum_{m, k} a_{n, m, k} v^{m} q^{k} \\
C_{n}(v) & =\sum_{m} c_{n, m} v^{m}
\end{aligned}
$$

Exponential generating functions:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} Z_{n}(q, v) & =F(x, 1+v)^{q} \\
\sum_{n=1}^{\infty} \frac{x^{n}}{n!} C_{n}(v) & =\log F(x, 1+v)
\end{aligned}
$$

[see Tutte (1967) and Scott-A.D.S., arXiv:0803.1477]

- Usually considered as formal power series
- But series are convergent if $|1+v| \leq 1$ [see also Flajolet-Salvy-Schaeffer (2004)]

Elementary analytic properties of $F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} y^{n(n-1) / 2}$

- $\boldsymbol{y}=0: F(x, 0)=1+x$
- $\mathbf{0}<|\boldsymbol{y}|<\mathbf{1}: F(\cdot, y)$ is a nonpolynomial entire function of order 0 :

$$
F(x, y)=\prod_{k=0}^{\infty}\left(1-\frac{x}{x_{k}(y)}\right)
$$

where $\sum\left|x_{k}(y)\right|^{-\alpha}<\infty$ for every $\alpha>0$

- $\boldsymbol{y}=1: F(x, 1)=e^{x}$
- $|\boldsymbol{y}|=1$ with $\boldsymbol{y} \neq 1: F(\cdot, y)$ is an entire function of order 1 and type 1 :

$$
F(x, y)=e^{x} \prod_{k=0}^{\infty}\left(1-\frac{x}{x_{k}(y)}\right) e^{x / x_{k}(y)}
$$

where $\sum\left|x_{k}(y)\right|^{-\alpha}<\infty$ for every $\alpha>1$
[see also Ålander (1914) for y a root of unity; Valiron (1938) and Eremenko-Ostrovskii (2007) for y not a root of unity]

- $|\boldsymbol{y}|>1$: The series $F(\cdot, y)$ has radius of convergence 0

Consequences for $C_{n}(v)$

- Make change of variables $y=1+v$:

$$
\bar{C}_{n}(y)=C_{n}(y-1)
$$

- Then for $|y|<1$ we have

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!} \bar{C}_{n}(y)=\log F(x, y)=\sum_{k} \log \left(1-\frac{x}{x_{k}(y)}\right)
$$

and hence

$$
\bar{C}_{n}(y)=-(n-1)!\sum_{k} x_{k}(y)^{-n} \quad \text { for all } n \geq 1
$$

(also holds for $n \geq 2$ when $|y|=1$)

- This is a convergent expansion for $\bar{C}_{n}(y)$
- In particular, gives large- n asymptotic behavior

$$
\bar{C}_{n}(y)=-(n-1)!x_{0}(y)^{-n}\left[1+O\left(e^{-\epsilon n}\right)\right]
$$

whenever $F(\cdot, y)$ has a unique root $x_{0}(y)$ of minimum modulus
Question: What can we say about the roots $x_{k}(y)$?

Small- y expansion of roots $x_{k}(y)$

- For small $|y|$, we have $F(x, y)=1+x+O(y)$, so we expect a convergent expansion

$$
x_{0}(y)=-1-\sum_{n=1}^{\infty} a_{n} y^{n}
$$

(easy proof using Rouché: valid for $|y| \lesssim 0.441755$)

- More generally, for each integer $k \geq 0$, write $x=\xi y^{-k}$ and study

$$
F_{k}(\xi, y)=y^{k(k+1) / 2} F\left(\xi y^{-k}, y\right)=\sum_{n=0}^{\infty} \frac{\xi^{n}}{n!} y^{(n-k)(n-k-1) / 2}
$$

Sum is dominated by terms $n=k$ and $n=k+1$; gives root

$$
x_{k}(y)=-(k+1) y^{-k}\left[1+\sum_{n=1}^{\infty} a_{n}^{(k)} y^{n}\right]
$$

Rouché argument valid for $|y| \lesssim 0.207875$ uniformly in k : all roots are simple and given by convergent expansion $x_{k}(y)$

- Can also use theta function in Rouché (Eremenko)

Might these series converge for all $|y|<1$?

Two ways that $x_{k}(y)$ could fail to be analytic for $|y|<1$:

1. Collision of roots (\rightarrow branch point)
2. Root escaping to infinity

Theorem (Eremenko): No root can escape to infinity for y in the open unit disc \mathbb{D}.

In fact, for any compact subset $K \subset \mathbb{D}$ and any $\epsilon>0$, there exists an integer k_{0} such that for all $y \in K \backslash\{0\}$ we have:
(a) The function $F(\cdot, y)$ has exactly k_{0} zeros (counting multiplicity) in the disc $|x|<k_{0}|y|^{-\left(k_{0}-\frac{1}{2}\right)}$, and
(b) In the region $|x| \geq k_{0}|y|^{-\left(k_{0}-\frac{1}{2}\right)}$, the function $F(\cdot, y)$ has a simple zero within a factor $1+\epsilon$ of $-(k+1) y^{-k}$ for each $k \geq k_{0}$, and no other zeros.

- Proof is based on comparison with a theta function (whose roots are known by virtue of Jacobi's product formula)
- Conjecture that roots cannot escape to infinity even in the closed unit disc except at $y=1$

Big Conjecture \#1. All roots of $F(\cdot, y)$ are simple for $|y|<1$. [and also for $|y|=1$, I suspect]

Consequence of Big Conjecture $\# 1$. Each root $x_{k}(y)$ is analytic in $|y|<1$.

But I conjecture more ...

Big Conjecture \#2. The roots of $F(\cdot, y)$ are non-crossing in modulus for $|y|<1$:

$$
\left|x_{0}(y)\right|<\left|x_{1}(y)\right|<\left|x_{2}(y)\right|<\ldots
$$

[and also for $|y|=1$, I suspect]
Consequence of Big Conjecture \#2. The roots are actually separated in modulus by a factor at least $|y|$, i.e.

$$
\left|x_{k}(y)\right|<|y|\left|x_{k+1}(y)\right| \quad \text { for all } k \geq 0
$$

Proof. Apply the Schwarz lemma to $x_{k}(y) / x_{k+1}(y)$.

Consequence for the zeros of $\bar{C}_{n}(y)$

Recall

$$
\bar{C}_{n}(y)=-(n-1)!\sum_{k} x_{k}(y)^{-n}
$$

and use a variant of the Beraha-Kahane-Weiss theorem [A.D.S., arXiv:cond-mat/0012369, Theorem 3.2] \Longrightarrow the limit points of zeros of \bar{C}_{n} are the values y for which the zero of minimum modulus of $F(\cdot, y)$ is nonunique.

So if $F(\cdot, y)$ has a unique zero of minimum modulus for all $y \in \mathbb{D}$ (a weakened form of Big Conjecture \#2), then the zeros of \bar{C}_{n} do not accumulate anywhere in the open unit disc.

I actually conjecture more (based on computations up to $n \approx 80$): Big Conjecture \#3. For each $n, \bar{C}_{n}(y)$ has no zeros with $|y|<1$. [and, I suspect, no zeros with $|y|=1$ except the point $y=1$]

What is the evidence for these conjectures?

Evidence \#1: Behavior at real y.
Theorem (Laguerre): For $0 \leq y<1$, all the roots of $F(\cdot, y)$ are simple and negative real.

Corollary: Each root $x_{k}(y)$ is analytic in a complex neighborhood of the interval $[0,1)$.
[Real-variables methods give further information about the roots $x_{k}(y)$ for $0 \leq y<1$: see Langley (2000).]

Now combine this with

Evidence \#2: From numerical computation of the series $x_{k}(y) \ldots$

Three methods for computing the series $x_{k}(y)$

1. Insert $x_{k}(y)=-(k+1) y^{-k}\left[1+\sum_{n=1}^{\infty} a_{n}^{(k)} y^{n}\right]$ and solve term-by-term
2. Use "explicit implicit function theorem" (generalization of Lagrange inversion formula) given in arXiv:0902.0069:
solve $z=G(z, w)$ with $G(0,0)=0$ and $\left|\frac{\partial G}{\partial z}(0,0)\right|<1$ by

$$
\varphi(w)=\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] G(\zeta, w)^{m}
$$

and more generally

$$
H(\varphi(w), w)=H(0, w)+\sum_{m=1}^{\infty} \frac{1}{m}\left[\zeta^{m-1}\right] \frac{\partial H(\zeta, w)}{\partial \zeta} G(\zeta, w)^{m}
$$

Methods 1 and 2 work symbolically in k.
3. Use

$$
\bar{C}_{n}(y)=-(n-1)!\sum_{k} x_{k}(y)^{-n}
$$

together with recursion

$$
\bar{C}_{n}(y)=y^{n(n-1) / 2}-\sum_{j=1}^{n-1}\binom{n-1}{j-1} \bar{C}_{j}(y) y^{(n-j)(n-j-1) / 2}
$$

[cf. Leroux (1988) and Scott-A.D.S., arXiv:0803.1477]

- can go to very high n, at least for small k

And let Mathematica run for a weekend ...

$$
\begin{aligned}
-x_{0}(y)=1 & +\frac{1}{2} y+\frac{1}{2} y^{2}+\frac{11}{24} y^{3}+\frac{11}{24} y^{4}+\frac{7}{16} y^{5}+\frac{7}{16} y^{6} \\
& +\frac{493}{1152} y^{7}+\frac{163}{384} y^{8}+\frac{323}{768} y^{9}+\frac{1603}{3840} y^{10}+\frac{57283}{138240} y^{11} \\
& +\frac{170921}{414720} y^{12}+\frac{340171}{829440} y^{13}+\frac{22565}{55296} y^{14} \\
& +\ldots+\text { terms through order } y^{775}
\end{aligned}
$$

and all the coefficients (so far) are nonnegative!

Big Conjecture $\# 4$. For each k, the series $-x_{k}(y)$ has all nonnegative coefficients.

Combine this with the known analyticity for $0 \leq y<1$, and VivantiPringsheim gives:

Consequence of Big Conjecture \#4. Each root $x_{k}(y)$ is analytic in the open unit disc.

NEED TO DO: Extended computations for $k=1,2, \ldots$ and for symbolic k.

But more is true ...

Look at the reciprocal of $x_{0}(y)$:

$$
\begin{aligned}
-\frac{1}{x_{0}(y)}=1 & -\frac{1}{2} y-\frac{1}{4} y^{2}-\frac{1}{12} y^{3}-\frac{1}{16} y^{4}-\frac{1}{48} y^{5}-\frac{7}{288} y^{6} \\
& -\frac{1}{96} y^{7}-\frac{7}{768} y^{8}-\frac{49}{6912} y^{9}-\frac{113}{23040} y^{10}-\frac{17}{4608} y^{11} \\
& -\frac{293}{92160} y^{12}-\frac{737}{276480} y^{13}-\frac{3107}{1658880} y^{14} \\
& -\ldots-\text { terms through order } y^{775}
\end{aligned}
$$

and all the coefficients (so far) beyond the constant term are nonpositive!
Big Conjecture \#5. For each k, the series $-(k+1) y^{-k} / x_{k}(y)$ has all nonpositive coefficients after the constant term 1.
[This implies the preceding conjecture, but is stronger.]

- Relative simplicity of the coefficients of $-1 / x_{0}(y)$ compared to those of $-x_{0}(y) \longrightarrow$ simpler combinatorial interpretation?
- Note that $x_{k}(y) \rightarrow-\infty$ as $y \uparrow 1$ (this is fairly easy to prove). So $1 / x_{k}(y) \rightarrow 0$. Therefore:

Consequence of Big Conjecture \#5. For each k, the coefficients (after the constant term) in the series $-(k+1) y^{-k} / x_{k}(y)$ are the probabilities for a positive-integer-valued random variable.

What might such a random variable be??? Could this approach be used to prove Big Conjecture \#5?

AGAIN NEED TO DO: Extended computations for $k=1,2, \ldots$ and for symbolic k.

But I conjecture that even more is true ...

Define $D_{n}(y)=\frac{\bar{C}_{n}(y)}{(-1)^{n-1}(n-1)!}$ and recall that $x_{0}(y)=\lim _{n \rightarrow \infty} D_{n}(y)^{-1 / n}$
Big Conjecture \#6. For each n,
(a) the series $D_{n}(y)^{-1 / n}$ has all nonnegative coefficients,
and even more strongly,
(b) the series $D_{n}(y)^{1 / n}$ has all nonpositive coefficients after the constant term 1 .

Since $D_{n}(y)>0$ for $0 \leq y<1$, Vivanti-Pringsheim shows that Big Conjecture \#6a implies Big Conjecture \#3:

For each $n, \bar{C}_{n}(y)$ has no zeros with $|y|<1$.

Moreover, Big Conjecture $\# 6 \mathrm{~b} \Longrightarrow$ for each n, the coefficients (after the constant term) in the series $D_{n}(y)^{1 / n}$ are the probabilities for a positive-integer-valued random variable.

Such a random variable would generalize the one for $-1 / x_{0}(y)$ in roughly the same way that the binomial generalizes the Poisson.

Roots $x_{k}(y)$ computed symbolically in k

$$
x_{k}(y)=-(k+1) y^{-k}\left[1+\sum_{n=1}^{\infty} \frac{P_{n}(k)}{Q_{n}(k)} y^{n}\right]
$$

where I have computed up to $n=15$:

$$
\begin{aligned}
P_{1}(y) & =1 \\
P_{2}(y) & =2+6 k+3 k^{2} \\
P_{3}(y) & =11+29 k+63 k^{2}+65 k^{3}+28 k^{4}+4 k^{5} \\
P_{4}(y) & =22+146 k+273 k^{2}+359 k^{3}+355 k^{4}+211 k^{5}+63 k^{6}+7 k^{7} \\
& \vdots \\
Q_{1}(y) & =(k+1)(k+2) \\
Q_{2}(y) & =(k+1)^{2}(k+2)^{2} \\
Q_{3}(y) & =(k+1)^{3}(k+2)^{3}(k+3) \\
Q_{4}(y) & =(k+1)^{4}(k+2)^{4}(k+3) \\
Q_{5}(y) & =(k+1)^{5}(k+2)^{5}(k+3) \\
Q_{6}(y) & =(k+1)^{6}(k+2)^{6}(k+3)^{2}(k+4)
\end{aligned}
$$

- $P_{n}(k)$ has nonnegative coefficients for $n \leq 9$ but not for $n=10,15$
- $P_{n}(k) \geq 0$ for all real $k \geq 0$ for $n \leq 14$ but not for $n=15$
- But $\ldots P_{n}(k) \geq 0$ for all integer $k \geq 0$ at least for $n \leq 15$ which gives evidence that Big Conjecture \#4 holds for all k :

For each k, the series $-x_{k}(y)$ has all nonnegative coefficients.

Reciprocals of roots $x_{k}(y)$ computed symbolically in k

$$
\frac{-(k+1) y^{-k}}{x_{k}(y)}=\left[1-\sum_{n=1}^{\infty} \frac{\widehat{P}_{n}(k)}{Q_{n}(k)} y^{n}\right]
$$

where I have computed up to $n=15$:

$$
\begin{aligned}
\widehat{P}_{1}(y) & =1 \\
\widehat{P}_{2}(y) & =1+6 k+3 k^{2} \\
\widehat{P}_{3}(y) & =2-10 k+33 k^{2}+59 k^{3}+28 k^{4}+4 k^{5} \\
\widehat{P}_{4}(y) & =3+71 k+24 k^{2}+82 k^{3}+236 k^{4}+194 k^{5}+63 k^{6}+7 k^{7} \\
& \vdots
\end{aligned}
$$

and $Q_{n}(y)$ are the same as before

- $\widehat{P}_{n}(k)$ does not have nonnegative coefficients (except for $n=$ $1,2,4)$
- $\widehat{P}_{n}(k) \geq 0$ for all real $k \geq 0$ for $n=1,2,3,4,5,7,8$ but not in general
- But $\ldots \widehat{P}_{n}(k) \geq 0$ for all integer $k \geq 0$ at least for $n \leq 15$ which gives evidence that Big Conjecture \#5 holds for all k :

For each k, the series $-(k+1) y^{-k} / x_{k}(y)$ has all nonpositive coefficients after the constant term 1.

Ratios of roots $x_{k}(y) / x_{k+1}(y)$

The series

$$
\frac{x_{0}(y)}{x_{1}(y)}=\frac{1}{2} y+\frac{1}{6} y^{2}+\frac{5}{72} y^{3}+\frac{11}{216} y^{4}+\frac{29}{1296} y^{5}+\ldots
$$

has nonnegative coefficients at least up to order y^{136}. (But its reciprocal does not have any fixed signs.)

Big Conjecture $\# 7$. The series $x_{0}(y) / x_{1}(y)$ has all nonnegative coefficients.

Consequence of Big Conjecture \#7. Since $\lim _{y \uparrow 1} x_{0}(y) / x_{1}(y)=1$, Big Conjecture \#7 implies that $\left|x_{0}(y)\right|<\left|x_{1}(y)\right|$ for all $y \in \mathbb{D}$ (a special case of Big Conjecture \#2 on the separation in modulus of roots).

- But unfortunately ... the series

$$
\frac{x_{1}(y)}{x_{2}(y)}=\frac{2}{3} y+\frac{1}{18} y^{2}+\frac{17}{216} y^{3}+\frac{23}{810} y^{4}+\frac{343}{17280} y^{5}+\ldots
$$

has a negative coefficient at order y^{13}. This doesn't contradict the conjecture that $\left|x_{1}(y) / x_{2}(y)\right|<1$ in the unit disc, but it does rule out the simplest method of proof.

- Symbolic computation of $x_{k}(y) / x_{k+1}(y)$ shows that, up to order y^{16}, the only cases of a negative coefficient for integer $k \geq 0$ are the coefficient of y^{13} for $k=1,2,3$.

Asymptotics of roots as $y \rightarrow 1$

Write $y=e^{-\gamma}$ with $\operatorname{Re} \gamma>0$.
Want to study $\gamma \rightarrow 0$ (non-tangentially in the right half-plane).

I believe I will be able to prove that

$$
-x_{k}\left(e^{-\gamma}\right) \approx \frac{1}{e} \gamma^{-1}+c_{k} \gamma^{-1 / 3}+\ldots
$$

for suitable constants $c_{0}<c_{1}<c_{2}<\ldots$. But I have not yet worked out all the details.

Overview of method:

1. Develop an asymptotic expansion for $F\left(x, e^{-\gamma}\right)$ when $\gamma \rightarrow 0$ and x is taken to be of order γ^{-1}, because this is the regime where the zeros will be found.
2. Use this expansion for $F\left(x, e^{-\gamma}\right)$ to deduce an expansion for $x_{k}\left(e^{-\gamma}\right)$.

Sketch of step \#1: Insert Gaussian integral representation for $e^{-\frac{\gamma}{2} n^{2}}$ to obtain

$$
F\left(x, e^{-\gamma}\right)=(2 \pi \gamma)^{-1 / 2} \int_{-\infty}^{\infty} \exp [g(t)] d t
$$

with

$$
g(t)=-\frac{t^{2}}{2 \gamma}+x e^{\gamma / 2} e^{i t}
$$

Saddle-point equation $g^{\prime}(t)=0$ is $-i t e^{-i t}=\gamma e^{\gamma / 2} x$, so it makes sense to make the change of variables

$$
x=\gamma^{-1} e^{-\gamma / 2} w e^{w}
$$

which puts the saddle point at $t_{0}=i w$. (Note that this brings in the Lambert W function, i.e. the inverse function to $w \mapsto w e^{w}$.) We then have

$$
F\left(\gamma^{-1} e^{-\gamma / 2} w e^{w}, e^{-\gamma}\right)=(2 \pi \gamma)^{-1 / 2} \int_{-\infty}^{\infty} d t \exp \left[-\frac{t^{2}}{2 \gamma}+\frac{w e^{w}}{\gamma} e^{i t}\right]
$$

Now shift the contour to go through the saddle point (parallel to the real axis) and make the change of variables $t=s+i w$: we have

$$
F\left(\gamma^{-1} e^{-\gamma / 2} w e^{w}, e^{-\gamma}\right)=(2 \pi \gamma)^{-1 / 2} \exp \left[\frac{w^{2}}{2 \gamma}+\frac{w}{\gamma}\right] \int_{-\infty}^{\infty} d s \exp [h(s)]
$$

where

$$
h(s)=-\frac{(1+w)}{2 \gamma} s^{2}+\frac{w}{\gamma}\left(e^{i s}-1-i s+\frac{s^{2}}{2}\right)
$$

and the integration goes along the real s axis.

These formulae should allow computation of asymptotics
(a) $\gamma \rightarrow 0$ (in a suitable way) for (suitable values of) fixed w; and
(b) $w \rightarrow \infty$ (in a suitable direction) for (suitable values of) fixed γ.

Focus for now on (a).

Recall that

$$
h(s)=-\frac{(1+w)}{2 \gamma} s^{2}+\frac{w}{\gamma}\left(e^{i s}-1-i s+\frac{s^{2}}{2}\right)
$$

Consider for simplicity γ and x real. There seem to be three regimes:

- "High temperature": $w>-1$ (i.e. $w e^{w}>-1 / e$).

Easiest case: $s=0$ saddle point is Gaussian, and can compute the asymptotics to all orders in terms of 3 -associated Stirling subset numbers $\left\{\begin{array}{c}n \\ m\end{array}\right\}_{\geq 3}$. [Still need to justify this formal calculation by showing that only the $s=0$ saddle point contributes.]

- "Low temperature": $w=-\eta \cot \eta+\eta i$ with $-\pi<\eta<\pi$ (i.e. $w e^{w}<-1 / e$).

Saddle points at $s=0$ and $s=2 \eta$ contribute; I think this is all.

- "Critical regime": $w=-\left(1+\xi \gamma^{1 / 3}\right)$ with ξ fixed, which corresponds to

$$
x=-\frac{1}{e \gamma}\left[1-\frac{\xi^{2}}{2} \gamma^{2 / 3}+O(\gamma)\right]
$$

- At the "critical point" $\xi=0$: Dominant behavior at $s=0$ saddle point is no longer Gaussian (it vanishes) but rather the cubic term $i s^{3} /(6 \gamma)$. Can compute the asymptotics to all orders in terms of 4 -associated Stirling subset numbers $\left\{\begin{array}{l}n \\ m\end{array}\right\}_{\geq 4}$ (at least formally).
- In the critical regime (ξ arbitrary): Expect to have Airy asymptotics as in Flajolet-Salvy-Schaeffer (2004). This is where the roots will lie.

I would appreciate help with the details!!!

The polynomials $P_{N}(x, w)=\sum_{n=0}^{N}\binom{N}{n} x^{n} w^{n(N-n)}$

- Partition function of Ising model on complete graph K_{N}, with $x=e^{2 h}$ and $w=e^{-2 J}$
- Related to binomial $(1+x)^{N}$ in same way as our $F(x, y)$ is related to exponential e^{x}
[but we have written $w^{n(N-n)}$ instead of $y^{n(n-1) / 2}$]
- $\lim _{N \rightarrow \infty} P_{N}\left(\frac{x w^{1-N}}{N}, w\right)=F\left(x, w^{-2}\right)$ when $|w|>1$
- So results about zeros of P_{N} generalize those about F
(just as results about the binomial generalize those about the exponential function)
- Lee-Yang theorem: In ferromagnetic case ($0 \leq w \leq 1$), all zeros are on the unit circle $|x|=1$
- Laguerre: In antiferromagnetic case ($w \geq 1$), all zeros are real and negative
- What about "complex antiferromagnetic" case $|w|>1$??

Big Conjecture \#8. For $|w|>1$, all zeros of $P_{N}(\cdot, w)$ are separated in modulus (by at least a factor $|w|^{2}$).

Taking $N \rightarrow \infty$, this implies Big Conjecture \#2 about the separation in modulus of the zeros of $F(\cdot, y)$.

Differential-equation approach to $P_{N}(x, w)=\sum_{n=0}^{N}\binom{N}{n} x^{n} w^{n(N-n)}$
On the space of polynomials $Q_{N}(x)=\sum_{n=0}^{N} a_{n} x^{n}$ of degree N with $a_{0} \neq 0$, define the semigroup

$$
\left(\mathcal{A}_{t} Q_{N}\right)(x) \equiv \sum_{n=0}^{N} a_{n} x^{n} e^{t n(N-n)}
$$

Roots of $\mathcal{A}_{t} Q_{N}$ evolve according to an autonomous differential equation, which is best expressed in terms of logarithms of roots $\zeta_{i}=\log x_{i}$:

$$
\frac{d \zeta_{i}}{d t}=\sum_{j \neq i} F\left(\zeta_{i}-\zeta_{j}\right)
$$

where

$$
F(z)=\operatorname{coth}(z / 2)
$$

These are first-order ("Aristotelian") equations of motion for a system of n "particles" (in \mathbb{R} or \mathbb{C}) with a translation-invariant "force" F

For polynomials Q_{N} with real roots and real $t>0$, this approach gives interesting results on separation of zeros. (In particular, it gives a new proof of Laguerre's theorem.)

Is this approach useful for complex t with $\operatorname{Re} t>0$???
Can it be used to prove Big Conjecture \#8?

