Vlady Ravelomanana

LIAFA – UMR CNRS 7089.
Université Denis Diderot.
vlad@liafa.jussieu.fr

joint work with

Hervé Daudé (LATP – Université de Provence)

&

Vonjy Rasendrahasina (LIPN – Université de Paris-Nord)
Outline of the talk

- Introduction & motivations.
- The 2-XORSAT phase transition.
- MAX-2-XORSAT.
- Conclusion and perspectives.
Introduction & Motivations
Decision and optimization problems play central key rôle in CS (cf. [GAREY, JOHNSON 79], [AUSIELLO et al. 03])

1. A decision problem is a question in some formal system with a yes/no answer:

 \[
 \begin{cases}
 \text{INPUT : an instance } I \text{ and a property } P. \\
 \text{OUTPUT : yes or no } I \text{ satisfies } P.
 \end{cases}
 \]

2. An optimization problem is the problem of finding the best solution from all feasible solutions.

In this talk, we consider two such problems: 2-XORSAT and MAX-2-XORSAT.
Random k-SAT formulas ($k > 2$) are subject to phase transition phenomena \cite{FRIEDGUT,BOURGAIN1999}.

Main research tasks include

1. **Localization** of the threshold (ex. \textbf{3-SAT} 4.2 \ldots \textbf{3-XORSAT} 0.91 \ldots \cite{DUBOIS,MANDLER03})

2. Nature of the phenomena: \textbf{sharp/coarse}. \cite{CREIGNOU,DAUDE2000++}.

3. Details inside the \textbf{window of transition} (ex. \textbf{2-SAT} \cite{BOLLOBAS,BORGSKIM,WILSON01})

4. \textbf{Space} of solutions (ex. \cite{ACHLIOPTAS,NAOR,PERES07} or \cite{MONASSONETAL07})
SAT-like problems: localization of 2-SAT’s threshold

- An instance: \((v_1 \lor v_2) \land (\neg v_1 \lor v_3) \land (\neg v_1 \lor \neg v_2)\)
- A solution: SAT with \((v_1 = 1, v_2 = 0, v_3 = 1)\).
- Localization of the threshold: \(n\) variables, \(m = c \times n\) clauses randomly picked from the set of \(4\binom{n}{2}\) clauses.
 - \(c < 1\) Proba SAT → 1, \(c > 1\) Proba SAT → 0.

Underlying combinatorial structures: directed graphs.

Write \(x \lor y\) as \(\begin{cases} \neg x = 1 \implies y = 1 \\ \neg y = 1 \implies x = 1 \end{cases}\)

Characterization: SAT iff no directed path between \(x\) and \(\neg x\) (and vice-versa).

Proof. First and second moments method [Göerdt 92, De la Vega 92, Chvátal, Reed 92].
Main motivations

- Since the empirical results (\cite{KirkpatrickSelman90} about k-SAT, rigorous results are quite **limited**!
- What are the contributions of **Enumerative/Analytic Combinatorics** to SAT/CSP-like problems?
- **Monasson** (2007) inferred that (statistical physics):

$$ \lim_{n \to +\infty} n^{\text{critical exponent}} \times \text{Proba} \left[2XORSAT(n, \frac{n}{2}) \right] = O(1), $$

where “critical exponent” = $1/12$.

- We will **show** that “critical exponent” = $1/12$ and will **explicit** the hidden constant behind the $O(1)$.
- We will **quantify** the **MAXIMUM** number of satisfiable clauses in random formula.
The 2-XORSAT phase transition
Ex:
\[x_1 \oplus x_2 = 1, \ x_2 \oplus x_3 = 0, \ x_1 \oplus x_3 = 0, \ x_3 \oplus x_4 = 1, \ldots \]

General form: \(AX = C \) where \(A \) has \(m \) rows and 2 columns and \(C \) is a \(m \)-dimensional 0/1 vector.

Distribution: uniform. We pick \(m \) clauses of the form \(x_i \oplus x_j = \varepsilon \in \{0, 1\} \) from the set of \(n(n-1) \) clauses.

Underlying structures: graphs with weighted edges
\[x \oplus y = \varepsilon \iff \text{edges of weight } \varepsilon \in \{0, 1\}. \]

Characterisation:
SAT iff no elementary cycle of odd weight.
SAT iff no elementary cycle of odd weight

\[
\begin{align*}
 x_1 \oplus x_2 &= 1 \\
 x_2 \oplus x_3 &= 0 \\
 x_1 \oplus x_3 &= 0 \\
 x_3 \oplus x_4 &= 1
\end{align*}
\]

- **UNSAT** \iff Fix a cycle of odd weight ...

- **SAT** \iff No cycles of odd weight. DFS affectionation based proof.
Main ideas of our approach

A basic scheme

1. **Enumeration** of “SAT”-graphs (graphs without cycles of odd weight) by means of generating functions.

2. Use the obtained results with **analytic combinatorics** to compute:

\[
\text{Prob. SAT} = \frac{\text{Nbr of configurations without cycles of odd weight}}{\text{Nbr total of configurations}}.
\]
$p(n, cn) \overset{\text{def}}{=} \text{Proba}[2 - \text{XOR with } n \text{ variables}, \text{cn clauses}]$ is SAT for $n = 1000$, $n = 2000$ and the theoretical function: $e^{c/2}(1 - 2c)^{1/4}$.

Taste of our results: the whole window
Rescaling at the point “zero”, i.e \(c = 1/2 \) : \(n = 1000 \), \(n = 2000 \) and
\[
\lim_{n \to \infty} n^{1/12} \times p(n, n/2 + \mu n^{2/3})
\]
as a function of \(\mu \).
We will **enumerate** the **connected graphs without cycles of odd weight** according to two parameters: **number of vertices** n and **number of edges** $n + \ell$. $\ell \overset{\text{def}}{=} \text{excess}$.

Let

$$C_\ell(z) = \sum_{n>0} c_{n,n+\ell} \frac{z^n}{n!}.$$

What are the series C_ℓ?
Enumerating graphs of 2-XORSAT.

We will enumerate the connected graphs without cycles of odd weight according to two parameters: number of vertices \(n \) and number of edges \(n + \ell \). \(\ell \) \(\text{def} \) excess.

Let

\[
C_\ell(z) = \sum_{n>0} c_{n,n+\ell} \frac{z^n}{n!}.
\]

What are the series \(C_\ell \)?

Th.

\[
C_\ell(z) = \frac{1}{2} W_\ell(2z)
\]

with \(W_\ell = \) Exponential generating functions of connected graphs \(\text{WRIGHT (1977)}. \)
Enumerations: trees and unicyclic components

- **Rooted and unrooted trees** (excess $= -1$)
 \[
 T(z) = ze^{2T(z)} = \sum_{n>0} (2n)^{-1} \frac{z^n}{n!}, \quad C_{-1}(z) = T - T^2.
 \]

- **Unicyclic components** (excess $= 0$)
 1. Number of labellings of a *smooth* cycle (i.e. without vertices of degree 1) using $n > 2$ vertices:
 \[
 \frac{2^n n!}{2n}.
 \]
 2. Thus, the EGF of smooth unicyclic components
 \[
 \tilde{C}_0(z) = -\frac{1}{4} \log (1 - 2z) - z/2 - z^2/2.
 \]
 3. Substituting each vertex with a full rooted tree, we get
 \[
 C_0(z) = -\frac{1}{4} \log (1 - 2T) - T/2 - T^2/2.
 \]

- **What about multicyclic components?** (excess > 0)
On a connected “SAT”-graph with n vertices and $n + \ell$ edges, the edges of a spanning tree can be colored in 2^{n-1} ways. The colors of the other edges are “determined”.
Let $F_r(z)$ be the EGF of all complex weighted labelled graphs (connected or not), with a positive \textit{total excess}1 r and without cycles of odd weight ("SAT-graph").

$$
\sum_{r \geq 0} F_r(z) = \exp \left(\sum_{k \geq 1} \frac{W_k(2z)}{2} \right)
$$

and for any $r \geq 1$

$$
rF_r(z) = \sum_{k=1}^{r} k \frac{W_k(2z)}{2} F_{r-k}(z), \quad F_0(z) = 1.
$$

Since $W_k(x) \asymp \frac{w_k}{(1-T(x))^{3r}}$ \cite{wright80}, we also have $F_k(x) \asymp \frac{f_k}{(1-T(2x))^{3r}}$ with

$$
2rf_r = \sum_{k=1}^{r} kb_k f_{r-k}, \quad r > 0.
$$

1total excess of the random graphs $\overset{\text{def}}{=} \text{nbr of edges} + \text{number of trees} - \text{number of vertices}$
The Random 2-XORSAT Transition

The probability that a random formula with \(n \) variables and \(m \) clauses is SAT satisfies the following:

(i) **Sub-critical phase**: As \(0 < n - 2m < n^{2/3} \),

\[
\Pr(n, m) = e^{m/2n} \left(1 - 2\frac{m}{n}\right)^{1/4} + O\left(\frac{n^2}{(n - 2m)^3}\right).
\]

(ii) **Critical phase**: As \(m = \frac{n}{2} + \mu n^{2/3} \), \(\mu \in \mathbb{R} \) fixed

\[
\lim_{n \to \infty} n^{1/12} \Pr\left(n, \frac{n}{2} (1 + \mu n^{-1/3})\right) = \Psi(\mu),
\]

where \(\Psi \) can be expressed in terms of the Airy function.

(iii) **Super-critical phase**: As \(m = \frac{n}{2} + \mu n^{2/3} \) with \(\mu = o(n^{1/12}) \)

\[
\Pr\left(n, \frac{n}{2} (1 + \mu n^{-1/3})\right) = \text{Poly}(n, \mu) e^{-\frac{\mu^3}{6}}.
\]
Proof of (i) : the sub-critical phase

1. As $0 < n - 2m \ll n^{2/3}$, the probability that a Erdős-Rényi random graph $G(n, m)$ has NO MULTICYCLIC COMPONENTS is

$$1 - O\left(\frac{n^2}{(n-2m)^3}\right) \left\{ \begin{array}{ll}
\text{if } m = cn \text{ with } \lim \sup c < 1/2, \text{ BigOh } = O(1/n) \\
\text{if } m = \frac{n}{2} - \mu(n)n^{2/3}, \text{ BigOh } = O(1/\mu^3)
\end{array} \right. $$

2. Then, the probability that the graph associated to random 2-XORSAT formula is SAT (conditionally that there is no multicyclic components) is given by

$$\frac{n!}{(n(n-1))} \left[z^n \right] \frac{C_{-1}(z)^{n-m}}{(n-m)!} \times \underbrace{e^{C_0(z)}}_{\text{set of even weighted unicyclic components}}$$
Saddle-point method for random 2-XORSAT sub-critical phase

\[m \leq \frac{n}{2} - \mu n^{2/3}, \quad 1 \ll \mu \]

1. Cauchy integral formula leads to

\[\text{coeff}(n, m) \times \frac{1}{2\pi i} \oint \frac{e^{-T(2z)/4-T(2z)^2/8}}{(1 - T(2z))^{1/4}} \left(\frac{T(2z)}{2} - \frac{T(2z)^2}{4} \right)^{n-m} \frac{dz}{z^{n+1}} \]

2. “Lagrangian” substitution \(u = T(2z) \).

3. \[\text{coeff}(n, m) \times \frac{1}{2\pi i} \oint g(u) \exp(nh(u)) du \]

4. \(h(u) = u - \frac{m}{n} \log u + (1 - \frac{m}{n}) \log (2 - u) \).
 Saddle-points at \(u_0 = 2m/n < 1 \) and \(u_1 = 1 \).
 \(h''(1) = 2m/n - 1 < 0 \) and \(h''(2m/n) = \frac{n(n-2m)}{4m(n-m)} > 0 \).
 Saddle-point method applies on circular path \(|z| = 2m/n \cdots\)
Proof of (ii) : Inside the critical phase (1/2)

\[m = \frac{n}{2} \pm \mu n^{2/3}, \quad |\mu| = O(n^{1/12}) \]

Some MULTICYCLIC COMPONENTS (can) appear and the general formula for the integral becomes:

1

\[
\text{coeff}(n, m, r) \times \frac{1}{2\pi i} \oint e^{-T(2z)/4 + T(2z)^2/8} \left(\frac{T(2z)}{2} - \frac{T(2z)^2}{4} \right)^{n-m+r} \frac{dz}{z^{n+1}}
\]

2

\[
\text{coeff}(n, m, r)e^n \times \frac{1}{2\pi i} \oint g_r(u) \exp(nh(u))du
\]

3

\[h(u) = u - 1 - \frac{m}{n} \log u + (1 - \frac{m}{n}) \log (2 - u). \]

Saddle-points at \(u_0 = 2m/n = 1 + 2\mu n^{-1/3} \) and \(u_1 = 1 \).

BUT at the critical point \(m = 2n (\mu = 0) \), we have \(u_0 = u_1 = 1 \) with **triple zero**

\[h(1) = h'(1) = h''(1) = 0. \]
Airy function and the critical window of transition

Integral representation on the complex plane

The Airy function is given by

\[
Ai(z) = \frac{1}{2\pi i} \int_C \exp \left(\frac{t^3}{3} - zt \right) dt,
\]

where the integral is over a path \(C \) starting at the point at infinity with argument \(-\pi/3\) and ending at the point at infinity with argument \(\pi/3 \).
The Airy function is given by

\[\text{Ai}(z) = \frac{1}{2\pi i} \int_C \exp \left(\frac{t^3}{3} - zt \right) dt , \]

where the integral is over a path \(C \) starting at the point at infinity with argument \(-\pi/3\) and ending at the point at infinity with argument \(\pi/3\).

Well suited for our purpose (see also \[\text{Flajolet, Knuth, Pittel 89}\], \[\text{Janson, Knuth, Łuczak, Pittel 93}\], \[\text{Flajolet, Salvy, Schaeffer 02}\], \[\text{Banderier, Flajolet, Schaeffer, Soria 01}\])!

Integrating on a path \(z = e^{-(\alpha +\text{i}t)n^{-1/3}} \), we get

\[e^{-\mu^3/6-n} \frac{1}{2^{2m-n-2r}} \times \frac{1}{2\pi i} \int \frac{e^{-T(2z)/4-T(2z)^2/8}}{(1 - T(2z))^{1/4+3r}} \left(\frac{T(2z)}{2} - \frac{T(2z)^2}{4} \right)^{n-m+r} \frac{dz}{z^{n+1}} \]

\[\sim e^{-3/8} A(1/4 + 3r, \mu) n^{-7/12} , \]

where \(A(y, \mu) = \frac{e^{-\mu^3/6}}{3(y+1)/3} \sum_{k>0} \frac{ \left(\frac{1}{2} 3^{2/3} \mu \right)^k }{k! \Gamma ((y + 1 - 2k)/3)} \).
Proof of (ii) : Inside the critical phase (2/2)

Define $p_r(n, m) = \text{Proba to have SAT-graph of excess } r$. The proba.
that a random formula is given by $p(n, m) = \sum_{r \geq 0} p_r(n, m)$.
The proof of part (ii) can now be completed by means of the following
facts

1. Using the Airy stuff, we compute for fixed r

$$n^{1/12} \times p_r(n, m) \sim \frac{\sqrt{2\pi} e^{1/4} f_r}{2^r} A(3r + 1/4, \mu).$$

2. Bounding the magnitude of the integral, it can be proved that there
exist $R, C, \epsilon > 0$ such that for all $r \geq R$ and all n:

$$n^{1/12} p_r(n, m) \leq C e^{-\epsilon r}.$$

(dominated convergence theorem applies).
Remark

On the first hand, writing \(m = \frac{n}{2} - \mu n^{2/3} \) the probability is about:

\[
e^{m/2n} \left(1 - \frac{2m}{n} \right)^{1/4} \sim e^{1/4} \mu^{1/4} n^{-1/12}.
\]

On the other hand, the Airy stuff are valid for \(m = \frac{n}{2} + \mu n^{2/3}, \quad |\mu| = O(n^{1/12}) \). Using

\[
A(r, \mu) = \frac{1}{\sqrt{2\pi} |\mu|^{y-1/2}} \left(1 - \frac{3y^2 + 3y - 1}{6|\mu|^3} + O(|\mu|^{-6}) \right)
\]
as \(\mu \to -\infty \) we get

\[
\sum_{r} p_r (n, m) \sim n^{-1/12} \left(\sum_{r=0}^{\infty} \frac{\sqrt{2\pi} e^{1/4} f_r}{2^r} A(3r + 1/4, \mu) \right) \sim e^{1/4} \mu^{1/4} n^{-1/12}.
\]
For the case (iii) of the theorem, we use

\[A(y, \mu) = \frac{e^{-\mu^3/6}}{2^{y/2} \mu^{1-y/2}} \left(\frac{1}{\Gamma(y/2)} + \frac{4\mu^{-3/2}}{3\sqrt{2} \Gamma(y/2 - 3/2)} + O(\mu^{-2}) \right). \]
Random MAX-2-XORSAT
Context

- **Max-2-XORSAT** is an NP-optimization problem (NPO). The corresponding decision problem is in NP (deciding if the size of the MAX is \(k \) ...).

- **Max/Min** problems are interesting (and difficult) in randomness context.

- **Previous works**: [Coppersmith, Gamarnik, Hajiaghayi, Sorkin 04] Expectations of the **Maximum** number of satisfiable clauses in MAX-2-SAT and MAX-CUT for the subcritical phases. **Bounds** of these expectations for some cases (namely for the critical and supercritical phases of random graphs)!

- **Our work**: Quantification of the **Minimum** number of clauses to remove in order to get satisfiable formula.
Let $X_{n,m}$ be the minimum number of clauses UNSAT in a random 2-XOR formula with n variables and m clauses. We have:

(i) **Sub-critical phase**: If $\limsup \frac{m}{n} < 1/2$ then

$$X_{n,m} \xrightarrow{\text{dist.}} \text{Poisson} \left(\log n - 3 \log \left(\frac{n-2m}{n^{2/3}} \right) - 3 \left(1 - \frac{2m}{n} \right) \right).$$

(ii) **Critical phase**: If $m = \frac{n}{2}(1 - \mu n^{-1/3})$, $1 \ll \mu \ll n^{1/3}$ then

$$\mathbb{P} \left(X_{n,m} - \frac{1}{4} \log(\mu n^{-1/3}) \leq x \sqrt{\frac{1}{4} \log(\mu n^{-1/3})} \right) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$$

(iii) **Supercritical phase**: If $m = \frac{n}{2} + \mu n^{2/3}$ with $\mu = o(n^{1/3})$ (resp. $m = \frac{n}{2}(1 + \varepsilon)$)

$$\frac{6X_{n,m}}{(2m-n)^3 + O(\log n)} \xrightarrow{\text{dist.}} 1.$$ (resp. $\frac{8(1 + \varepsilon)}{n(\varepsilon^2 - \sigma^2)} X_{n,m} \xrightarrow{\text{dist.}} 1,$)

where σ is the solution of $(1 + \varepsilon)e^{-\varepsilon} = (1 - \sigma)e^\sigma$.
Notations

- $X_{n,m}$: minimum number of UNSAT clauses in random formula with n variables and m clauses.

- $Y_{n,m}$: minimum number of clauses to suppress in unicyclic components.

- $Z_{n,m}$: minimum number of clauses to suppress in multicyclic components.

$$X_{n,m} = Y_{n,m} + Z_{n,m}.$$
Proof of the sub-critical phase

In the sub-critical random graphs, we know that $Z_{n,m} = O_p(1)$.

- If $m = cn$, $c \in]0, \frac{1}{2}[$, $\forall R$ fixed, we have
 \[
 \Pr(Y_{n,m} = R) = e^{-\alpha(c)} \frac{\alpha(c)^R}{R!} \left(1 + O\left(\frac{1}{n}\right)\right).
 \]

- If $m = \frac{n}{2}(1 - \mu n^{-1/3})$ with $\mu \to \infty$ but $\mu = o(n^{1/3})$, we get $\forall R \leq 4\beta(n)$
 \[
 \Pr(Y_{n,m} = R) = e^{-\beta(n)} \frac{\beta(n)^R}{R!} \left(1 + O\left(\frac{1}{\mu^3}\right)\right).
 \]

- There are $R_0, C, \varepsilon > 0$, s. t. $\forall R > R_0$
 \[
 \Pr(Y_{n,m} = R) \leq Ce^{-\varepsilon R}.
 \]

with

\[
\beta(n) = \frac{1}{12} \log(n) - \frac{1}{4} \log(\mu) - \frac{1}{4} + \frac{1}{4} \mu n^{-1/3},
\alpha(c) = -\frac{1}{4} \log(1 - 2c) - \frac{c}{2}.
\]
Corollary. As \(n \to \infty \) and \(m = cn, c \in]0, 1/2[\), for all \(k \geq 1 \),

\[
E(X_{n,m})_k \sim \alpha(c)^k.
\]

If \(m = \frac{n}{2}(1 - \mu n^{-1/3}) \) but \(\mu = o(n^{1/3}) \)

\[
E(X_{n,m})_k \sim \beta(n)^k.
\]

with

\[
\beta(n) = \frac{1}{12} \log(n) - \frac{1}{4} \log(\mu) - \frac{1}{4} + \frac{1}{4} \mu n^{-1/3}
\]

and

\[
\alpha(c) = -\frac{1}{4} \log(1 - 2c) - \frac{c}{2}
\]
Theorem. As $n, m \to \infty$ and $m = \frac{n}{2} \pm O(1)n^{2/3}$, then for all k

$$E(X_{n,m})_k \sim \frac{1}{12^k} \log(n)^k.$$

Here again, by [JANSON, KNUTH, ŁUCZAK, PITTEL 93] $Z_{n,m} = O_{p}(1)$.

The k-th factorial moment of $Y_{n,m}$ is $\sum_r s_{r,k}$ where

$$s_{r,k} = \frac{1}{n(n-1)} \frac{n!}{2\pi i} \int \frac{\partial^k}{\partial u^k} S_r(u, z)|_{u=1} \frac{dz}{z^{n+1}}$$

$$S_r(u, z) = \frac{\left(T(z) - T(z)^2\right)^{n-m+r}}{(n-m+r)!} \exp \left(C_{0,0}(z) + uC_{1,0}(z)\right) F_r(z),$$

$F_r(z)$: EGF of multicyclic components.
Lemma. As $\ell \to \infty$, the probability that the number of edges to suppress in order to obtain a (weighted) connected graph without cycles of odd weight from a (weighted) connected graph of excess ℓ is larger than

$$\frac{\ell}{4} - o(\ell)$$

is at least

$$1 - e^{-O(\ell)} - e^{-4c(\ell)^2 + \frac{1}{2} \log(\ell)}$$

where $c(\ell)^2 \gg \log(\ell)$.
Lemma. As $\ell \to \infty$, the probability that the number of edges to suppress in order to obtain a (weighted) connected graph without cycles of odd weight from a (weighted) connected graph of excess ℓ is larger than

$$\frac{\ell}{4} - o(\ell)$$

is at least

$$1 - e^{-O(\ell)} - e^{-4c(\ell)^2 + \frac{1}{2} \log(\ell)}$$

where $c(\ell)^2 \gg \log(\ell)$

To prove this lemma, we need another one!
Let $C_{s,\ell}$ be the EGFs of connected components of EXCESS ℓ and where at \textbf{LEAST} s edges have to be suppressed to obtain components without cycles of odd weight.

Lemma. For all $s \geq 0$, we have

$$C_{s,\ell}(z) \prec \left(\sum_{i=s}^{2s} \binom{\ell + 1}{i} \right) C_{0,\ell}(z)$$
Lower bound of the probability (super-critical phase)

Let \(C_{s,\ell} \) be the EGFs of connected components of EXCESS \(\ell \) and where at least \(s \) edges have to be suppressed to obtain components without cycles of odd weight.

Lemma. For all \(s \geq 0 \), we have

\[
C_{s,\ell}(z) \prec \left(\sum_{i=s}^{2s} \binom{\ell + 1}{i} \right) C_{0,\ell}(z)
\]

Idea of the proof.
SAT \Rightarrow UNSAT
Lemma. If in a connected component of excess ℓ we have to suppress at least s edges to obtain a SAT-graph then this component has at most s fundamental and distinct cycles of **odd weight**.

Idea of the proof. Immediate.

As a crucial **consequence**, such a connected component has a **cactus** (as a subgraph) with at most s cycles of odd weight.
Lemma. If in a connected component of excess ℓ we have to suppress at least s edges to obtain a SAT-graph then this component has at most s fundamental and distinct cycles of **odd weight**.

Idea of the proof. Immediate. As a crucial **consequence**, such a connected component has a cactus (as a subgraph) with at most s cycles of odd weight.

Example.
Lemma. Let $\tilde{\Xi}_s(z)$ be the EGF of smooth cactii (Husimi trees) with s cycles, we have:

$$\frac{\partial}{\partial z} \tilde{\Xi}_s + (s - 1) \tilde{\Xi}_s = \frac{1}{2} \sum_{i=1}^{s-1} (\partial z \tilde{\Xi}_i) (\partial z \tilde{\Xi}_{s-i}) (\partial (P) - P) + \sum_{k=1}^{s-1} z^k \frac{\partial^k}{\partial z^k} \partial z \tilde{\Xi}_1$$

$$\times \sum_{\ell_1 + 2\ell_2 + \cdots + (s-1)\ell_{s-1} = s-1} \frac{(\partial z \tilde{\Xi}_1)^{\ell_1}}{\ell_1!} \cdots \frac{(\partial z \tilde{\Xi}_{s-1})^{\ell_{s-1}}}{\ell_{s-1}!} \left(\frac{1}{z} + \frac{P}{z^2}\right)^k$$

with $P \equiv P(z) = \frac{z^2}{1-z}$.
Lemma. We have

$$\Xi_s(z) \leq \frac{\xi_s}{(1 - t(z))^{3s-3}}, \quad s > 1$$

where \((\xi_s)_{s>1}\) satisfies \(\xi_2 = \frac{1}{8}, \xi_3 = \frac{1}{12}\) and for \(s \geq 3\), we have:

$$3(s - 1)\xi_s = \frac{3}{2}(s - 2)\xi_{s-1} + \frac{9}{2} \sum_{i=2}^{s-2} (i - 1)(s - i - 1)\xi_i \xi_{s-i} +$$

$$\frac{1}{2} \sum_{k=1}^{s-1} k! \left(\sum_{l_1 + 2l_2 + \cdots + (s-1)l_{s-1} = s-1} \frac{(\frac{1}{2})^{l_1}}{l_1!} \frac{(3\xi_2)^{l_2}}{l_2!} \cdots \frac{(3(s-2)\xi_{s-1})^{l_{s-1}}}{l_{s-1}!} \right)$$
Lemma. We have

\[\Xi_s(z) \leq \frac{\xi_s}{(1 - t(z))^{3s-3}}, \quad s > 1 \]

where \((\xi_s)_{s>1}\) satisfies \(\xi_2 = \frac{1}{8}, \xi_3 = \frac{1}{12}\) and for \(s \geq 3\), we have:

\[
3(s - 1)\xi_s = \frac{3}{2}(s - 2)\xi_{s-1} + \frac{9}{2} \sum_{i=2}^{s-2} (i - 1)(s - i - 1)\xi_i \xi_{s-i} +
\]

\[
\frac{1}{2} \sum_{k=1}^{s-1} \frac{1}{k!} \left(\sum_{\ell_1 + 2\ell_2 + \cdots + (s-1)\ell_{s-1} = s-1} \frac{\left(\frac{1}{2}\right)^{\ell_1} (3\xi_2)^{\ell_2} \cdots (3(s-2)\xi_{s-1})^{\ell_{s-1}}}{\ell_1! \ell_2! \cdots \ell_{s-1}!} \right)
\]

Lemma. As \(s \to \infty\),

\[
\xi_s = \frac{1}{6} \left(\frac{3}{2}\right)^{s-1} \frac{3^{s/2}}{\sqrt{2\pi s^3(s - 1)}} \left(1 + O\left(\frac{1}{s}\right)\right).
\]
Corollary. The number of connected component of excess ℓ obtained by adding edges from cactii with s cycles can be neglected if

$$s > \frac{\ell}{2} + O\left(\frac{\ell}{\log(\ell)}\right).$$
Corollary. The number of connected component of excess ℓ obtained by adding edges from cactii with s cycles can be neglected if $s > \frac{\ell}{2} + O\left(\frac{\ell}{\log(\ell)}\right)$.

Idea of the proof.

- Pick a cactus with s cycles.
- Add $(\ell - s)$ edges to obtain a connected component of excess ℓ. The number of such constructions can be bounded by pointing/depointing the last added edge.
- The ratio of the number of these objects over the number of all connected components of excess ℓ is exponentially small as $s > \frac{\ell}{2} + O(\ell/\log \ell)$.
On connected components of excess ℓ the number of edges to suppress lies w.h.p. between

$$\frac{\ell}{4} - O(\ell^{1/2}) \leq |\text{suppressions}| \leq \frac{\ell}{4} + O\left(\frac{\ell}{\log \ell}\right).$$

Now, we can use the result on random graphs from [PITTEL, WORMALD 05] to complete the proof of the theorem.
Conclusion and perspectives
Enumerative/Analytic approaches of

1. a decision problem and its phase transition
2. an NP-optimization problem.
Conclusion and perspectives

Enumerative/Analytic approaches of

1. a decision problem and its phase transition
2. an NP-optimization problem.

Similar methods on other problems such as

1. bipartiness (or 2-COL),
2. MAX-2-COL, MAX-CUT, MIN-VERTEX-COVER, MIN-BISECTION (all are hard optimization problems related to bipartiteness/2-COL).
3. 2-QXORSAT (quantified formula).
MAX-CUT \sim MAX-2-XORSAT (i)
MAX-CUT \sim MAX-2-XORSAT (ii)

Graph \rightarrow MAX-2-XORSAT

MAX-CUT