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Aim of Study

I To find the asymptotic distribution of the number of
records in random split trees. (This number is equal in
distribution to the number of cuts needed to eliminate this
type of tree.)



The Binary Search Tree is an Example of a Split Tree
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I Each vertex is associated with a key number, drawn from
some set with n ordered numbers. Only the order relations of
the keys are important. The first key is added to the root.

I Each new key is drawn from the remaining numbers and is
recursively added to subtrees by comparing it with the current
root’s key; it is added to the left child if it is smaller and to
right child if it is larger.



The Binary Search Tree (continued)

I Since the rank of the root’s key is equally likely to be

{1, 2, . . . , n}, the size of its left subtree
d
= bnUc, where U is a

uniform U(0, 1) r.v..

I All subtree sizes can be explained in this manner by associate
each node with an independent uniform r.v. Uv . If a subtree

rooted at v has size V , the size of its left subtree is
d
= bVUvc.

I Thus, given all Uv ’s the subtree size for a vertex v at depth k
is close to

nU1U2 . . .Uk ,

where Ui , i ∈ {1, . . . , k} are U(0, 1) r.v..



The M-ary Search Trees are Examples of Split Trees

Figure: A trinary respectively a quadrary tree generated by the keys 11,
4, 7, 15, 8, 10, 14, 9, 5, 1, 2, 12, 3, 6, 13.

I In a m-ary search tree each vertex is associated with m − 1
key numbers. The first m − 1 drawn keys are hold by the root
in increasing order creating m intervals. Then keys are added
recursively to the subtrees rooted in the m children of the root
decided by which of the m intervals the new key belongs to.



Figure: A trinary respectively a quadrary tree generated by the keys 11,
4, 7, 15, 8, 10, 14, 9, 5, 1, 2, 12, 3, 6, 13.



M-ary Search Trees (continued)

I Since only the order relations are important we can equally
construct the m-ary search tree by drawing N i.i.d say U(0, 1)
r.v. and add the keys recursively as in the construction of a
m-ary search tree. Thus, the lengths of the intervals
V1, . . . ,Vm if we cut a [0,1] interval uniformly m − 1 times
give the probabilities for going to respectively child of the
root. The components Vi , i ∈ {1, . . . ,m}’s are distributed as
min(U1,U2, . . . ,Um−1), where U1, . . . ,Um−1 are i.i.d U(0, 1)
r.v. .

I All subtree sizes can be explained in this manner. If a subtree
rooted at v holds S keys, the subtree size vector
(S1,S2, . . . ,Sb) for the children of v is multinomial
(S −m + 1,V v

1 , . . . ,V
v
m), where (V v

1 , . . . ,V
v
m) is v ’s splitting

vector with components distributed as min(U1,U2, . . . ,Um−1).



What is a Split Tree?

(Devroye 1998)

.

.

Branch factor b

Cardinality N

V

Vertex capacity s>0

attached to each vertex.

random splitting vector
Independent copy of the

   =(V , V , ..., V ) is1 2 b



I Binary search tree:

branch factor b = 2,
vertex capacity s = 1,

splitting vector V = (U, 1−U), where U
d
= U(0, 1).

Keys (or balls) are added to the left child with probability
U and to the right child with probability 1− U.

I M’ary search trees:

branch factor b = m,
vertex capacity s = m− 1,
splitting vector V = (V1, . . . ,Vm), where

Vi
d
= min(U1,U2, . . . ,Um−1).



s_0=1
s_1=0

b=4
s=3

All internal vertices have s_0=1 balls

Note that s_1=0.

All leaves have between 1 and s=3 balls.

Note that s_1 is at most 2.

All leaves have between 2 and s=4 balls.

b=2
s=4
s_0=0
s_1=2

All internal vertices have s_0=0 balls

Balls are added one at a time. Each new ball starts in the root and
is recursively added to subtrees, using the probabilities given by the
splitting vectors Vv = (V1, . . . ,Vb). Vi is the probability for adding
the ball to the i :th child. The ball stops when it reaches a leaf.
When a leaf gets s + 1 balls it splits and sends balls to its children.



Examples of Split Trees and Common Properties

I The class of split trees includes many important random trees
such as binary search trees, m-ary search trees,
quadtrees, median of (2k + 1)-trees, simplex trees, tries
and digital search trees.

I The maximal depth (or height) of split trees is O(log n).

I Split trees have similar properties to the deterministic
complete binary tree, with maximal depth blog2 nc and most
vertices close to this depth.

I In split trees most vertices are close to the depth µ−1 ln n, for
some constant µ depending on the split tree.
In the specific case of the binary search tree this depth is
2 ln n.



What is a Record in a Rooted Tree?

I Given a rooted tree T , let each vertex v have a random value
λv attached to it. Assume that these values are i.i.d. with a
continuous distribution.

I A value λv is a record if it is the smallest value in the path
from the root to v . Let X (T ) denote the (random) number of
records.



What is a Cutting in a Rooted Tree?

I Choose one vertex at random.

I Cut in this vertex so that the tree separates into two parts,
and keep only the part containing the root.

I Continue recursively until the root is cut.



Records and Cuttings in Rooted Trees

I The number of records X (T ) is equal in distribution to the
number of cuts. (Janson 2004)
Think! A vertex v is cut at some time iff λv is a record.
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Aim of Study

I To find the asymptotic distribution of the number of records
(or equivalently the number of cuts) in random split trees.



Background

I Cutting down trees first introduced by Meir and Moon (1970).

I Janson uses a probabilistic approach considering records
instead of cuts in the tree finding the distribution (after
normalization) of Xv (T ) = number of records (=number of
cuts). He finds the asymptotic distributions for conditioned
Galton-Watson trees (2004), e.g labelled trees and random
binary trees and for a fixed complete binary tree (2004).

I Drmota, Iksanov, Moehle and Roesler, recently used analytic
methods to prove asymptotic distributions of the number of
cuts in the random recursive tree.



The Main Theorem

Let TN be a split tree with N balls, and let X(TN) be the
number of records (or cuts) in TN.

Theorem
Suppose that N →∞. Then(

X (TN)− αN

µ−1 ln N
− αN ln ln N

µ−1 ln2 N

) / αN

µ−2 ln2 N

d→ −W , (1)

where µ and α are constants and W has an infinitely divisible
distribution more precisely a weakly 1-stable distribution with
characteristic function

E
(

e itW
)

= exp
(
− µ−1

2
π|t|+ it(C )− i |t|µ−1 ln |t|

)
, (2)

where C is a constant.



Infinitely Divisible Distributions

A distribution of a random variable Z is infinitely divisible if for
each n, there exist i.i.d random variables Zn,k , 1 ≤ k ≤ n, such
that

Z
d
=

n∑
k=1

Zn,k , ∀ n,

or equivalently

E
(
e itZ

)
=
(

E
(
e itZn,1

))n
, ∀ n.



α-Stable Distributions

The stable distributions belong to the class of infinitely divisible
distributions.
A distribution of a random variable Z is α-stable for α ∈ (0, 2] if
for a sequence of i.i.d random variables Zk , k ≥ 1 distributed as Z
there exists constants cn such that

n∑
k=1

Zk
d
= n

1
αZ + cn,

for all n. The distribution is strictly stable if for all n, cn = 0 and
weakly stable otherwise.



Method of Proof of the Main Theorem

I To express the number of records X (T ) by a sum of i.i.d. r.v.
derived from λv and then apply a classical limit theorem for
convergence of a sum of triangular null arrays to infinitely
divisible distributions. This method was first used by Janson for

finding the distribution of the number of records in the deterministic

complete binary tree. For the Galton Watson trees the method of

moments was used but this method is not possible to use for trees

of logaritmic height!

I To extend the Janson method so that it can be used for the
more complex random binary search tree.

I To generalize the proofs for the binary search tree and show
that this method can be used also for all other types of split
trees.



Complete Binary Tree: Most Nodes Close to the Top
Level of Depth log2 n



In Split Trees Most Nodes Close to Depth O(ln n)

2ln n

2ln n+O(ln^(1/2)n)

2ln n−O(ln^(1/2)n)

0.3711... ln n

4.31107... ln n

All levels are full up to here.

The height of the tree.

Most nodes are in this strip.

Figure: This figure shows an example of the binary search tree where
most nodes are close to 2 ln n.



Subtree Sizes

I In a split tree with N balls, given the root’s splitting vector
Vσ = (V1, . . . ,Vb), the numbers of balls in the subtrees
rooted at the root’s children are close to NV1, . . . ,NVb.

I Let Nv be the number of balls in the subtree rooted at the
vertex v .
Given all splitting vectors in the tree, Nv for v at depth k is
close to

NW1W2 . . .Wk , (3)

where Wr , r ∈ {1, . . . , k} are i.i.d. r.v distributed as Vi .
The Wr ’s are given by the splitting vectors associated with
the vertices in the unique path from v to the root.

I The Nv ’s are not independent for different vertices!



“Good” and “Bad” Vertices in Split Trees

I There is a central limit theorem for the depth of vertices so

that “most” vertices lie at µ−1 ln N +O
(√

ln N
)

. Devroye

(1998)

I Let h(v) denote the depth of a vertex v in the split tree TN .
A vertex v is called good if

µ−1 ln N − ln0.6 N ≤ h(v) ≤ µ−1 ln N + ln0.6 N,

and bad otherwise. Recall that the subtree sizes can be
expressed by r.v.’s that depend on the splitting vectors. I use
this fact to apply large deviations and show that the bad
vertices are bounded by a small error term and can thus be
ignored.



Advantage to Considering Records in Subtrees

I Consider the subtrees Ti , 1 ≤ i ≤ bL rooted at
L = C log log n.

I Let Λi be the smallest value of the λv ’s from the vertex i to
the root of TN . Given TN and the λv ’s below level L,

X (TN) ≈
bL∑
i=1

X (Ti )Λi
.

3
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Figure: The subtrees T1, T2, T3, T4 at depth L = 2 are considered. This
example has Λ1 = 1, Λ2 = 8, Λ3 = 3 and Λ4 = 3.



Advantage to Considering Records in Subtrees
continued

Recall that Λi is the smallest value of the λv ’s from vertex i to the
root of TN . By using the Chebyshev inequality, the total number
of records given Λi in the subtrees Ti rooted at depth L i.e.

bL∑
i=1

X (Ti )Λi
,

can be approximated by the conditional expected value

bL∑
i=1

E(X (Ti )Λi
| Ti ,Λi ).



The conditional expectation of X (Ti)Λi

Let for each vertex v ∈ Ti , Iv be the indicator that λv is the
minimum value given Ti and Λi i.e. the smallest value of the values
λv ’s from the vertex i to the root of TN . Thus,

E(X (Ti )Λi
| Ti ,Λi ) =

∑
v 6=vi

E(Iv ).

Let hi (v) be the depth of v in Ti i.e. the distance between v and
the root i . By using that the values λv ’s are independent Exp(1)
random variables one easily get

E(Iv ) =
1− e−hi (v)Λi

hi (v)
.

Thus,

E(X (Ti )Λi
| Ti ,Λi ) =

∑
v 6=vi

1− e−hi (v)Λi

hi (v)
.



The conditional expectation of X(Ti)Λi
continued

Let Ni be the number of balls in Ti . Since most vertices in Ti have
depths in the strip

µ−1 ln Ni − ln0.6 Ni ≤ h(v) ≤ µ−1 ln Ni + ln0.6 Ni

(i.e. these are the good vertices in Ti ) the sum

E(X (Ti )Λi
| Ti ,Λi ) =

∑
v 6=vi

1− e−hi (v)Λi

hi (v)

is close to

(1− e−µ
−1 ln Ni Λi )

∑
v 6=vi

1

hi (v)
. (4)

Again because most vertices are good we can use Taylor expansion
about µ−1 ln Ni for approximating 1

hi (v) in (4).



Approximation of X(TN) depending on Nv ’s and λv ’s

Recall that the purpose of these calculations is to find an
approximation of X (TN) since we showed that this number could
be approximated by

bL∑
i=1

E(X (Ti )Λi
| Ti ,Λi ).

The result we get is an approximation of X (TN) depending on the
subtree sizes Ni for h(i) = L and Λi i.e. the smallest value of the
values λv ’s from the vertex i to the root of TN . We want to use a
triangular array theorem and therefore we need independent
random variables. Neither the Ni ’s or the Λi ’s are independent!
However, from the approximation we got it is quite easy to find an
approximation of X (TN) depending on Nv , h(v) ≤ L and
λv , h(v) ≤ L. Thus, at least the λv ’s are independent.



Applying a Theorem for Triangular Arrays

I The normalized X (TN) in the Main Theorem can be
expressed as

−
( ∑

h(v)≤L

ξv +
N∑

i=1

ξ
′
i

)
+ op(1),

where ξv := Nvµ−1 ln N
N · e−λvµ−1 ln N and the ξ

′
i ’s are r.v.’s only

depending on the Nv ’s with h(v) = L.

I Conditioned on the Nv ’s, the ξv ’s are independent r.v.’s since
the λv ’s are independent, and the ξ

′
i ’s are deterministic.

Thus, given the Nv ’s, {ξv}
⋃
{ξ′i } is a triangular array.

I The purpose is to use a classical central limit theorem
for convergence of a sum of triangular null arrays to
infinitely divisible distributions.



The Triangular Array Theorem Requires Theorem 2.1

I The limit theorem for convergence of a sum of triangular null
arrays to infinitely divisible distributions requires that three
conditions for the null array are fulfilled.

I Theorem 2.1 shows that these conditions are fulfilled for
{ξv}

⋃
{ξ′i } conditioned on the Nv ’s (with ξ

′
i deterministic).

I Theorem 2.1 shows that the limit theorem for null arrays can
be applied to

∑
h(v)≤L ξv +

∑N
i=1 ξ

′
i given the Nv ’s. The limit

theorem implies that this sum converges in distribution to a
r.v. W , with an infinitely divisible distribution that does not
depend on the given Nv ’s.

I Thus, the Main Theorem is proved i.e. X (TN)
normalized converges to −W with an infinitely divisible
distribution.



Theorem 2.1

Let ΩL be the σ-field generated by {Nv , h(v) ≤ L}.
Theorem 2.1
Suppose that N →∞ and choose any constant c > 0 .
Conditioning on the σ-field ΩL the following hold

(i) sup
v

P
(
ξv > x

∣∣ΩL

)
→ 0 for every x > 0, i .e. {ξv} is a null array

(ii)
∑

h(v)≤L

P
(
ξv > x

∣∣ΩL

) p→ ν(x ,∞) =
µ−1

x
for every x > 0,

(iii)
∑

h(v)≤L

E
(
ξv1[ξv ≤ c]

∣∣ΩL

)
+

N∑
i=1

ξ
′
i

p→ K , K is a constant

(iv)
∑

h(v)≤L

Var
(
ξv1[ξv ≤ c]

∣∣ΩL

) p→ µ−1c .



Proof of Theorem 2.1

I Theorem 2.1, which implies the Main Theorem has a technical
proof. The idea is to use the Chebyshev inequality for proving
that the sums in (ii), (iii) and (iv) are sharply concentrated
about their mean values.

I Important Observation: The sums in (ii), (iii) and (iv) only
depend on the subtree sizes {Nv , h(v) ≤ L}.

I Recall that Nv for v at depth k , is close to NW1W2 . . .Wk ,
where Wr , r ∈ {1, . . . k} are independent r.v.’s distributed as
the components Vi in the splitting vector.

I Let Yk := −
∑k

r=1 ln Wr . Note that NW1W2 . . .Wk = Ne−Yk .
In a binary search tree, Yk is distributed as a Γ(k, 1) r.v. since

Wr
d
= Vi

d
= U, where U is a uniform U(0, 1) r.v..



Proof of Theorem 2.1 (continued)

I For general split trees there is usually no simple distribution
function for Yk ; instead renewal theory is used.

I Define the renewal function

U(t) =
∞∑

k=1

bkP(Yk ≤ t) =
∞∑

k=1

Fk(t), (5)

and let F (t) := F1(t) = bP(Wi ≤ t).

I For U(t) we obtain the following renewal equation

U(t) = F (t) +
∞∑

k=1

(Fk ∗ F )(t) = F (t) + (U ∗ F )(t).

I For t →∞ the solution of this equation is

U(t) = (µ−1 + o(1))et .



Conclusions

I It was tested whether the Janson method for determining the
asymptotic distribution of the number of records (or cuts) in a
deterministic complete binary tree could be extended to
random split trees.

I It was shown that with modifications, the Janson method
could be used for determining the asymptotic distribution of
the number of records (or cuts) in the binary search tree,
which is one well-characterized type of split tree.

I Further, by also introducing renewal theory, the method of
proof used for the binary search tree could be generalized to
cover all split trees.

I The results show that for the entire large class of random split
trees the normalized number of records (or cuts) has
asymptotically a weakly 1-stable distribution.



Acknowledgements

I Professor Svante Janson, Uppsala University.


